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ABSTRACT 
 
Recently, we developed a method for optimally estimating focus error given a set of natural scenes, a wave-
optics model of the lens system, a sensor array, and a specification of measurement noise. The method is 
based on first principles and can be tailored to any vision system for which these properties can be 
characterized. Here, the method is used to estimate defocus in local areas of images (64x64 pixels) formed 
in a Nikon D700 digital camera fitted with a 50mm Sigma prime lens. Performance is excellent. Defocus 
magnitude and sign can be estimated with high precision and accuracy over a wide range. The method 
takes an integrative approach that accounts for natural scene statistics and capitalizes (but not does depend 
exclusively) on chromatic aberrations. Although chromatic aberrations are greatly reduced in achromatic 
lenses, we show that there are sufficient residual chromatic aberrations in a high-quality prime lens for our 
method to achieve good performance. Our method has the advantages of both phase-detection and contrast-
measurement autofocus techniques, without their disadvantages. Like phase detection, the method provides 
point estimates of defocus (magnitude and sign), but unlike phase detection, it does not require specialized 
hardware. Like contrast measurement, the method is image-based and can operate in “Live View” mode, 
but unlike contrast measurement, it does not require an iterative search for best focus. The proposed 
approach could be used to develop improved autofocus algorithms for digital imaging and video systems. 
 
Keywords: Defocus, natural images, optics, chromatic aberration, Bayesian statistics, autofocus, phase-
detection, contrast measurement 
 

1. INTRODUCTION 
 
Consider a photographer who has just photographed a subject in front of a mountain landscape. Now 
imagine that the photographer decides to photograph the mountains alone. She will recompose the 
photograph and, because the camera is focused at the wrong distance, press the shutter half-way down to 
engage the camera’s autofocus mechanism. Once the camera has cleared the focus error (i.e. autofocused 
on the mountains) she will fully depress the shutter and expose the photographic sensor. 
 
The autofocus methods in most widespread use are contrast-measurement and phase-detection. These 
methods work well in many situations, but both suffer from serious drawbacks. Contrast measurement 
employs an iterative search for maximum contrast; it is slow and can be inaccurate. Phase detection 
requires costly specialized hardware (e.g., beam splitters, dedicated sensors) and does not work in “Live 
View” mode. The computer vision and engineering literatures describe many algorithms for estimating 
defocus from image data alone. However, these algorithms typically require simultaneous multiple images, 
special lens apertures, or light with known patterns projected onto the environment [1-4]. In other words, 
the algorithms cannot typically be used with standard camera images. 
 
Despite the extensive body of work on autofocusing, there is still no widely accepted formal theory of 
defocus estimation from image data alone. Recently, we proposed such a theory by combining the 
principles of ideal Bayesian estimation together with a characterization of natural image statistics, a 
characterization of the wave-optics of the lens system, and a characterization of the spectral sensitivities, 
spatial sampling, and noise properties of the sensor array [5]. Here we demonstrate that the theory provides 
a useful alternative method for autofocusing (and potentially depth estimation) in conventional digital 
cameras. We apply this method to the problem of estimating defocus (magnitude and sign) from 64x64 
pixel areas in images captured by a Nikon D700 SLR camera fitted with a Sigma 50mm prime lens. 
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Our method capitalizes on two main dimensions of information: i) the shape of the power spectrum of local 
image patches and ii) the differences between the local power spectra in the color channels. The difference 
between the color channels depends both on the correlations between the spatio-chromatic spectra of 
natural scenes and on the chromatic aberrations of the imaging system [5]. Although most high-quality 
camera lenses are ‘achromatic’ (i.e., many chromatic aberrations are eliminated) there are sufficient 
residual chromatic aberrations to estimate the sign of the defocus well above chance. In this paper we 
deliberately consider a high quality lens, because such lenses represent a worst-case scenario. Thus, the 
results presented in this paper represent a lower bound on performance; lower quality lenses (e.g. cell 
phone camera lenses) should generally produce better estimation performance.  
 
By integrating the statistical structure of natural scenes, the properties of a high-quality digital SLR camera, 
and a Bayesian statistical analysis, we show that for each location in an individual image, it is possible to 
obtain accurate and precise estimates of defocus magnitude. We also show that sign estimation 
performance that is far better than chance. Thus, our approach provides the advantages of contrast-
measurement and phase-detection autofocusing while avoiding their disadvantages. 
 

2. METHODS & RESULTS 
 
The defocus of a target is the difference between the lens system’s focus distance and the target distance: 
ΔD = Dfocus − Dtarget  where ΔD  is the defocus, Dfocus  is the current focus distance, and Dtarget  is the target 
distance expressed in units of diopters (1/meters). The goal is to estimate ΔD  in each local image patch.  
 
Defocus information is determined by the statistical structure of natural scenes and the imaging system’s 
optics, sensors, and noise characteristics. The input from a natural scene is represented by an idealized (i.e., 
unaffected by optics) input image,    I (x,λ) , which gives the radiance at each location x = (x, y)  in the 
sensor array for each wavelength λ . The optical system is represented by a point-spread function 

( ), ; ( , ), ( , , )psf a W Dλ λ λ Δx z z  that gives the spatial distribution of light across the sensor array produced 

by a point target of wavelength λ . The point-spread function depends on the aperture function a z,λ( )  that 
specifies the shape, size, and transmittance of the pupil aperture for each wavelength. It also depends on the 
wavefront aberration function ( , , )W Dλ Δz , which depends on the position z in the plane of the aperture, 
the wavelength, and the defocus [6]. The sensor array is represented by a wavelength sensitivity function 

  sc
(λ)  (normalized so the sensitivities sum to 1.0) and a spatial sampling function sampc (x)  for each sensor 

class, c. Sensor noise is represented by a spatial-frequency-dependent detection threshold. Combining these 
factors (except for sensor noise) gives the spatial pattern of responses in each sensor class: 

 
   
rc x( ) = I x,λ( )∗ psf x,λ,ΔD( )⎡⎣ ⎤⎦

λ
∑ sc λ( )⎛

⎝⎜
⎞
⎠⎟

sampc x( )    (1) 

where ∗  represents two-dimensional convolution in x . In terms of Equation (1), the goal is to estimate 
defocus, ∆D, at each point in an image from local sensor responses,    rc(x) , in the available sensor classes 
(typically, R, G, and B sensors). Thus, we need to measure the relevant natural scene statistics, as well as 
the optics, sensors, and noise properties of the digital imaging system of interest.  
 
2.1 Natural Scenes 
 
To obtain an empirical estimate of the statistical structure of idealized natural images, we collected a set of 
80 well-focused three-color-channel photographs of varied scenes on and around the UT Austin campus 
(images available at www.cps.utexas.edu/natural_scenes) [5]. To ensure that these images were sharp, we 
focused the camera on optical infinity and took care that all imaged objects were at least 16 meters away. 
This ensured a maximum of -1/16 diopter of defocus blur in the training set. In most cases, however, the 
defocus blur was nearer to zero. Each input image is thus an approximation to the true idealized input 
image. Eight hundred 64 x 64 pixel patches were randomly selected from the photographs; four hundred for 
training and four hundred for testing. 
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Patches with RMS contrast less than 5% were excluded. This exclusion removed the small percentage of 
patches that were dominated by camera pixel noise (16%; 9% from blank blue sky, 7% from non-sky 
regions). This exclusion level is conservative. Humans typically select patches with much higher contrasts. 
We asked two experienced photographers, who were naïve to the purpose of the study, to select five 64x64 
patches from each of 80 natural input images. They were instructed to select patches, via a mouse click, 
that they might try to autofocus a camera on. Neither photographer selected a single patch with contrast less 
than 14%. 
 
2.2 Optics 
 
The first step in estimating defocus is to characterize the properties of the camera lens for different defocus 
levels. For a fixed aperture, the primary factor in determining optical quality is the mismatch between the 
target distance and the lens’s focus distance. As this focus error increases, the optics become progressively 
more low-pass. The Siemens star is good stimulus for illustrating the effect of defocus on image quality. 
Fig. 1 shows images (taken with our D700 camera) of a Siemens star square-wave target, illuminated by 
530nm light. As focus error increases, the highest-frequency at which contrast is still visible decreases. 
 

 
Figure 1. Distance, defocus, and the effect of defocus on image quality. The diagram shows the relationship between 
distance and defocus, for a camera that is focused at 1.33 meters (0.75 diopters). Image quality decreases as defocus 
magnitude increases. In a diffraction limited optical system, defocus levels of the same magnitude but opposite signs   
(-/+) produce identical defocus blur. The photographs are of a Siemens star square-wave test pattern for three different 
focus errors (∆D = 0.0, 0.5, 0.75). All depicted targets were illuminated with 530nm wavelength light. Optical 
degradation is radially symmetric. Contrast reversals are noticeable as defocus increases. 
 
An imaging system’s optics also depends on the wavelength of light. A simple lens (e.g., the human lens) 
best focuses light of a specific wavelength reflected off an object at a specific distance; light of all other 
wavelengths is blurred. This phenomenon is known as longitudinal chromatic aberration. Longitudinal 
chromatic aberration reduces image quality because the images captured by different color channels are 
blurred differentially. In the human eye, the effect of chromatic aberration is huge: between the peak 
sensitivities of the long- and short-wavelength cones (570 and 445nm, respectively) [7], the optics change 
power by ~1 diopter [8] (Fig. 3c), the same change in power that occurs when focus distance changes from 
infinity to 1 meter. 
 
Camera lens manufacturers have gone to great lengths to develop high-quality ‘achromatic’ lenses in which 
chromatic aberrations are greatly reduced (Fig. 3c). These lenses can simultaneously best focus light at two 
well-separated wavelengths, thereby reducing differential color blurring and improving image quality.  
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However, improving image quality by reducing chromatic aberrations reduces a signal that is useful for 
estimating the sign of focus error [5,9,10]. Therefore, one issue we address is whether sufficient residual 
chromatic aberrations remain in high-quality achromatic prime lenses for the sign of a focus error to be 
well estimated. 
 
In the analyses that follow, we use a Sigma 50mm prime lens with a maximum aperture of f/2.8. Given its 
46.8˚ horizontal field of view and the camera’s 4256x2832 pixel resolution, the sampling rate of the sensor 
array was 91.5 samples per deg. The lens aperture was set to f/10, which corresponds to an aperture 
diameter of 5mm. 
 
We characterize the optics at each wavelength and defocus level with a monochromatic point-spread 
function (psf). We estimate the monochromatic psf for multiple wavelengths across the visible spectrum. 
These monochromatic psfs are then combined to form three polychromatic point-spread functions, one for 
each color-channel. The polychromatic point-spread functions are used to simulate the effect of the camera 
optics on images for different levels of defocus.  
 
To determine the effect of chromatic aberrations, we measured the camera’s psf as a function of 
wavelength, at a nominal defocus of -0.5 D. First, a temporary target was positioned at 1.33 m (0.75 D) 
from the nodal point of the lens. Under broadband lighting, the camera’s autofocus mechanism was used to 
focus the lens on the target. The temporary target was then removed. Next, a Siemens star square-wave 
target was positioned at 0.80 m (1.25 D) for a defocus (∆D) of -0.5 D (see Fig. 1). After darkening the 
room, we illuminated the test pattern with a monochromatic light source and photographed the Siemens 
star. We repeated the procedure for wavelengths between 400 and 700 nm in 10 nm steps [11].  
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Figure 2. Estimating and fitting camera optics. A. Each panel shows the estimated modulation transfer function (MTF) 
of a target imaged with ∆D = -0.5 for three different wavelengths—450nm, 530nm, 600nm—matched to the peak 
wavelength sensitivity of the camera’s color channels. Arrows mark the lowest frequency at which a phase reversal 
occurs. The lateral displacement of the arrows indicates the presence of chromatic aberrations. The MTF for 530 nm 
was obtained from analysis of the second photograph in Fig 1. Different colors mark MTF estimates from different 
harmonics of the square-wave (blue = fundamental, green = 3rd harmonic, red = 5th harmonic, etc.). B. OTF fits (black 
curves) to the data shown in A. The gray area indicates frequencies for which contrast reversals occur. Note that the 
axes have different scales. 
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We estimated the monochromatic optical transfer function (OTF)—the Fourier transform of the psf—by 
comparing the Fourier coefficients of the defocused star target to those of an idealized sharp square wave 
target [12]. In estimating the OTF, the optics was assumed to be radially symmetric. The procedure’s 
accuracy was verified with simulations.  
 
Fig 2A shows the monochromatic OTF estimates for three different wavelengths. The arrows indicate the 
lowest frequency at which a phase reversal occurs. (Such phase reversals are readily seen in the photograph 
in Fig 1. at -0.75 D of defocus.) The lateral displacement of the arrows indicates a change in the OTF with 
wavelength, which in turn indicates the presence of chromatic aberrations. 
 
Then, we fit the raw OTF estimates with a model OTF generated from a single surface lens model that was 
as well matched to the camera lens as possible (aperture size, aperture shape, focal length, defocus). 
Chromatic defocus and spherical aberration were left as free parameters. The fitted OTFs matched the 
shape of the raw data well. Example fitted OTFs (black curves) are shown in Fig. 2b. The wavelength-
dependent change in chromatic defocus and spherical aberration are shown in Fig. 3a,b.  
 

Ch
ro

ma
tic

 D
ef

oc
us

 (d
iop

te
rs)

 

-0.02

0.00

0.02

400 500 600 700
Wavelength (nm)

Sp
he

ric
al 

Ab
er

ra
tio

n 
(m

icr
on

s)

-0.1

0.0

0.1
50mm Prime Lens

Aperture f/10
5mm diameter

B G R

400 500 600 700
Wavelength (nm)

A B

B G R

400 500 600 700
-0.5

0.0

0.5

1.0

1.5

2.0

Wavelength (nm)
Ch

ro
ma

tic
 D

ef
oc

us
 (d

iop
te

rs)

Human Eye

50mm
Prime Lens

C

 
Figure 3. Chromatic aberrations in a 50mm prime lens. A Change in chromatic defocus with wavelength. Arrows mark 
the peak sensitivity of each color channel. Brackets indicate the width at half-height of each color channel’s wavelength 
sensitivity function (see Section 2.3 & Fig. 5). B Change in spherical aberration with wavelength. C Comparison of 
chromatic defocus in a 50mm prime lens (same as in A) with chromatic defocus in the human lens. 
 
Polychromatic OTFs for each color-channel were obtained by performing a weighted average of the fitted 
monochromatic OTFs, where the weights are given by the wavelength sensitivity functions measured via 
the method described in the next section. Thus, the polychromatic OTF is given by 
  
 

   
OTFc f ,ΔD( ) = OTF f ,λ,ΔD( )sc λ( )

λ
∑      (2) 

 
where f = u,v( )  indicates horizontal and vertically oriented frequencies.  
 
We simulated polychromatic OTFs for 15 different defocus levels (-0.875 to 0.875 D in 1/8 D steps) by 
appropriately adding or subtracting defocus to the fitted monochromatic OTFs, and then performing the 
same weighted averaging as before. For a fixed focus distance of 1.33 m (0.75 D), this range of defocus 
levels corresponds to target distances ranging from 0.67 m to infinity (see Fig. 1). We assume chromatic 
defocus does not change with target distance (which is known to hold) and we ignore the minor changes in 
spherical aberration with target distance. Fig. 4 shows example polychromatic modulation transfer 
functions (MTFs) for select levels of defocus; the MTF is the magnitude of the OTF. 
 
Although we have taken pains to ensure that our measurements are accurate, some inaccuracies inevitably 
remain. Potentially more accurate results could be obtained via direct measurement of the lens’ wavefront 
aberrations using commercially available equipment. Nonetheless, our measurements should be more than 
adequate for demonstrating the value of the proposed method for estimating defocus. 
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Figure 4. Polychromatic modulation transfer functions (MTFs) for five defocus levels. Red and green channel MTFs 
for A -0.50 D, B -0.25 D, C 0.00 D, D +0.25 D, and E +0.50 D. The green-channel MTFs are higher pass for negative 
defocus, whereas the red-channel is higher pass for positive defocus. This relationship holds for all other defocus 
levels. Thus, the difference between the color channels within panels provides a small but reliable signal to the sign of 
defocus. The difference in average shape across panels provides a reliable signal to the magnitude of defocus. 
 
2.3 Sensor Array 
 
Next, we determined the wavelength sensitivity and spatial sampling of the sensor array. In an otherwise 
dark room, a reflectance standard having a flat reflectance spectrum was illuminated with a monochromatic 
light source. A spectroradiometer was positioned at a 45˚ angle on one side of the reflectance standard; a 
camera was positioned at a 45˚ angle on the other side (Fig. 5a). The reflected spectrum was measured with 
the spectroradiometer and an image was captured with the camera. Care was taken not to overexpose the 
photos. The procedure was repeated every 10nm between 400 and 700nm. The spectral measurements, 
aperture, shutter speed, and average pixel value from each of the camera’s color-channels were used to 
determine the wavelength sensitivities of the color channels [13]. The sensitivities of each color channel are 
shown in Fig. 5b. Spatial sampling was matched to the camera’s Bayer color filter array pattern as indicated 
from the product specifications (Fig. 5c). 
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Figure 5. Characterizing the sensor array. A The physical setup used to measure the wavelength sensitivity of each 
color channel. B Estimated red, green, and blue pixel wavelength sensitivity functions. C Spatial sampling pattern of 
the Bayer color filter array. 
 
2.4 Noise 
 
The Nikon D700 has a CMOS sensor. CMOS sensors have a white spatial pixel noise component that is 
given by: 

  σ r
2 =αr +σ 0

2         (3) 
 
where   σ r

2  is the variance of the sensor response, 2
0σ  is additive baseline noise variance, α  is a 

multiplicative scalar, and r  is the mean sensor response. In addition, CMOS sensors have a fixed spatial 
pattern of noise. Ideally some of this pattern noise could be subtracted out. However, the aim in this paper 
is to demonstrate the potential usefulness of our method for defocus estimation. Thus, for simplicity, we 
lumped the noise sources together.  
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The procedure for estimating the sensor noise was as follows. First, we captured images of an 
approximately uniformly illuminated sheet of white paper (Fig. 6, left insets) for a fixed shutter speed (1/60 
sec) and a range of aperture sizes. The camera lens was defocused to increase the uniformity of the central 
image region. For each aperture size, we computed the mean sensor response r . The variance of the sensor 
response   σ r

2  was computed after filtering the image region with a ‘derivative’ kernel, ( )1, 1− , in the 
vertical and horizontal directions (Fig. 6, right insets). The purpose of the filtering was to remove smooth 
non-uniformities in gray level due to non-uniform illumination or camera optics [14]. However, the kernel 
also removes some noise power. We calibrated the noise power removed by the kernel by applying it to 
Gaussian white noise with a variance of 1.0. Multiplying the measured variance of the filtered camera 
images by the inverse variance of this filtered white noise corrects for the noise power removed by the 
kernel. The symbols in Fig. 6 represent the corrected variance in a patch as a function of mean sensor 
response. The solid line shows the least-squares fit of Equation (3) to the data. The procedure was repeated 
for each color channel. The best-fit parameters are  α = 0.54  and  σ 0

2 = 265  for the red channel,  α = 0.41  

and  σ 0
2 = 54.3  for the green channel, and  α = 0.87  and  σ 0

2 = 89.3  for the blue channel. All parameters 
assume a 16-bit dynamic range (i.e. maximum sensor response equals 216-1). 
 

 
Figure 6. Characterizing sensor noise for a CMOS sensor. Noise variance is plotted as a function of the 16-bit mean 
pixel value in thousands for the A red color channel, B green color channel, and C blue color channel. Each symbol 
represents a different image with a different exposure. The line shows the fitted noise model (Equation 3). Best-fit 
parameter values are in the main text.  
 
One potential concern is that the white-noise assumption, in conjunction with the filtering operation, may 
underestimate the contribution of the fixed pattern noise, because the power spectrum of the pattern noise is 
not perfectly flat [15]. However, we find that quadrupling the estimated noise variance in the camera has a 
negligible effect on the defocus estimation performance described below. 
 
2.4 Defocus estimation 
 
With the training set of natural inputs, and the measurements of the digital camera’s optics, sensors, and 
noise, we investigated how well defocus magnitude and sign can be estimated from 64x64 pixel patches of 
natural image.  
 
There are two steps in our method for estimating defocus: i) learn the optimal spatio-chromatic filters for 
defocus estimation (in the particular digital imaging system) and ii) use the filter responses to estimate 
defocus optimally. The first step is computationally expensive, but it must be performed only once for a 
given camera system. The second step is extremely fast (i.e. on the order of a millisecond) and could be 
implemented in the firmware of a digital imaging system. 
 
To learn the optimal defocus filters, we need a large set of 64x64 pixel training patches. Equation 1 
specifies how to determine the (noiseless) sensor responses, given an idealized hyper-spectral input 
I(x,λ) . However, as mentioned in Section 2.1, for training and testing we used well-focused three-color-
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channel images 
   

IR (x), IG (x), IB(x)⎡⎣ ⎤⎦  as approximations to idealized hyper-spectral images. Each channel 
was defocused with polychromatic point-spread functions (see Section 2.2), before being spatially sampled 
by the sensor array. Specifically, the sensor responses associated with each color-channel are given by 
 
 rc x( ) = Ic x( )* psfc x,ΔD( )⎡⎣ ⎤⎦ sampc x( )      (4)  
 
where psfc x,ΔD( )  is a polychromatic point-spread function, which is obtained via inverse Fourier 
transform of a polychromatic OTF (see Equation 2). We have previously shown that these approximations 
are highly accurate for simulating the sensor responses to defocused hyper-spectral images [5]. In fact, 
three-color-channel camera images are preferable because hyper-spectral images are often contaminated by 
motion blur. Gaussian white noise was added to the sensor responses of each training and test patch 
according to Equation 3 and the parameters in Section 2.4.  
 
From 400 randomly sampled idealized training patches (Section 2.1) and 15 polychromatic OTFs (Section 
2.2), we generated 6000 defocused training patches. We consider only the defocus information in the red 
(R) and green (G) sensors, because the difference in chromatic defocus is largest between R and G (see Fig. 
3a). (Later we show that inclusion of the blue sensor can further improve performance.) Thus, for the 
present analysis, the defocus information is contained in the noisy sensor responses, R ( )r x  and G ( )r x . 
Each sensor patch was converted to a contrast patch by subtracting off and dividing by the mean. Finally, 
we applied a cosine window, obtained the Fourier spectra, and radially averaged the power spectra of the 
sensor responses (for each sensor class) for each patch. These power spectra constituted the training inputs 
to the algorithm. 
 
Optimal spatio-chromatic filters were learned using a recently developed statistical technique for 
dimensionality reduction called Accuracy Maximization Analysis (AMA). The algorithm returns rank-
ordered filters that maximize accuracy in a specific task [16]. (A Matlab implementation of AMA is 
available at http://jburge.cps.utexas.edu/research/Code.html.) In the present case, AMA finds the spatio-
chromatic filters that maximize the accuracy for the task of defocus estimation, over the given dioptric 
range [5]. Here, we learned eight AMA filters. The first four filters are shown in the insets of Fig. 7.  
 

 
Figure 7. Defocus filters and filter response distributions (i.e., conditional likelihood distributions). A Joint filter 
response distributions and Gaussian fits for filters 1 and 2 (insets). Each symbol represents a joint response to an 
individual image patch. Different colors indicate different defocus levels. Filter responses cluster as a function of 
defocus level. Some levels are not shown for clarity. B Filter response distributions and Gaussian fits for filters 3 and 4 
(insets). Filters 1 and 2 primarily separate the defocus levels by magnitude, whereas filters 3 and 4 do a relatively better 
job than filters 1 and 2 at separating defocus sign, especially for -0.50 and +0.50 D.  
 

SPIE-IS&T/ Vol. 8299  82990E-8

Downloaded from SPIE Digital Library on 25 Jan 2012 to 76.93.55.49. Terms of Use:  http://spiedl.org/terms



The red- and green-channel power spectra associated with a given patch can be described as a single 
combined vector, as can a particular spatio-chromatic frequency filter. Thus, the filter response R to a given 
patch is obtained by taking the dot product of the two vectors. With multiple filters, a vector of filter 
responses R is obtained for each patch in the training set. The joint responses of filters 1 and 2 and filters 3 
and 4 are shown in Fig. 7a,b (the contours are iso-probability contours for fitted two-dimensional 
Gaussians). As can be seen, the filter responses cluster as a function of defocus level. 
 
We characterized the joint (8 dimensional) filter response distributions for each defocus level by fitting 
Gaussians from the sample means and covariances, ( ) ( )| ; ,i i ip D gaussΔ =R R Σµ . These are the 
conditional likelihood functions. Bayes’ rule specifies how to obtain the posterior probability of each 
defocus level, given the filter responses and conditional likelihood functions 
 

 p ΔDi | R( ) = p R | ΔDi( ) p ΔDi( )
p R | ΔDj( ) p ΔDj( )

j
∑      (4) 

 
Fig. 8 shows the posterior probability distributions across defocus level computed for several actual 
defocus levels of a given example image patch, assuming a uniform prior over defocus level. Notice that 
there is information in the posterior distributions about both the magnitude and the sign of defocus. 
 

 
Figure 8. Defocused test patches and posterior probability distributions. A Example test patches for five levels of 
defocus (∆D = -0.50, -0.25, 0.00, +0.25, +0.50). B Corresponding posterior probability distributions. Some 
distributions are uni-modal, others are bi-modal, and still others (not shown) are multi-modal. The locations of the 
peaks signal the magnitude of defocus and the ratio of the mass on either side of zero signals the sign of defocus. 
 
To estimate of the magnitude of defocus from a posterior probability distribution, we considered two 
estimators, the maximum a posteriori (MAP) estimator (e.g., the location of the peak in each panel of Fig. 
8) 
 
	  

   
ΔD̂mag = argmax

ΔD
p ΔD | R( )⎡⎣ ⎤⎦ 	   	   	   	   	   	   (5)	  

 
and the expected magnitude (EMG) estimator,  
 
 ΔD̂mag = ΔD

i
∑ p ΔDi |R( )       (6) 

 
The two estimators perform similarly, but the EMG estimator is somewhat more robust. 
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To estimate defocus sign we compute the log posterior mass ratio (LPMR) and then take its sign: 
 

 LPMR = log
p ΔD ≥ 0 |R( )
p ΔD ≤ 0 |R( )

	   	   	   	   	   	   (7) 

 
 ΔD̂sgn = sgn LPMR( ) 	   	   	   	   	   	   	   (8) 
 
Note that the LPMR is the log ratio of the posterior probability mass on either side of zero (see Fig. 8).  
 
To test the algorithm we defocused 400 randomly sampled test patches (Section 2.1) with polychromatic 
OTFs corresponding to each of 29 defocus levels (-0.875 to 0.875 D in 1/16 D steps) to obtain 11600 test 
patches. We then performed the same steps as above to generate a set of test power spectra. Thus, none of 
the test patches were in the training set, and only half the test defocus levels were in the training set.  
 
Estimates of defocus magnitude are accurate and have high precision (+ 0.04 D) over a wide range (Fig. 
9a). Defocus sign is estimated correctly 78.4% of the time (Fig. 9b). If the above calculations are repeated 
for the green and blue sensors and the LPMR values for each sensor pair are added (LPMRRG + LPMRGB), 
then sign identification performance increases to 80.2%. Performance on the test set equaled performance 
on the training set, indicating that the natural scenes were not under-sampled and that the filters were not 
over-fit. 
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Figure 9. Estimates of defocus in test patches. A Median of expected magnitude (EMG) defocus estimates. Error bars 
are 68% confidence intervals. Red boxes indicate defocus levels not in the training set. The similarly-sized error bars at 
both trained and untrained levels indicate that the algorithm produces continuous estimates. B Accuracy of sign 
identification. C An out-of-focus image patch, a patch that has been refocused based on a typical estimation error, and a 
perfectly refocused patch. D The log posterior probability mass ratio (Equation 7) provides a patch-by-patch confidence 
signal that the sign estimate is correct. E Frequency of occurrence of different values of the log probability mass ratio. 
 
The implications of these results are illustrated in Fig. 9c. The first panel shows an image patch that is 
substantially out-of-focus ( 0.5DΔ = − ). The second panel shows an image patch that has been refocused 
with an estimate that is in error by -0.04 D, an error that is ~1 standard deviation from the mean (i.e., half 
the average 68% confidence interval). The third panel shows that a patch that has been refocused with a -
0.04 D error is almost indistinguishable from a perfectly focused patch. 
 
The sign identification performance reported here (80% correct) is remarkable given the low level of 
chromatic aberrations in the achromatic lens (see Discussion). Indeed, the positively and negatively 
defocused patches in Fig. 8 are nearly indistinguishable perceptually. We have shown previously [5], that 
our algorithm can achieve near perfect sign identification performance in vision systems (e.g. the human 
visual system; see Fig. 3c) having more significant chromatic aberrations. Thus, lenses with more 
chromatic aberration, like the lenses on many point-and-shoot or cell-phone cameras, will almost certainly 
yield better performance. 
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Given that our estimates of defocus sign are not perfect, it might be advantageous to have a signal that is 
related to the probability that a given sign estimate is correct. Fig. 9d shows the probability that the sign 
estimate is correct as a function of the value of the LPMR. Fig. 9e shows the frequency of occurrence for 
different LPMR values. There is a strong relationship between the magnitude of the LPMR and percent 
correct. Thus, this signal could be of potential utility when designing control systems for refocusing a 
camera lens. 
 

3. DISCUSSION 
 
The results presented here demonstrate that a digital camera’s sensor responses are sufficient to estimate, 
with high accuracy and precision, the magnitude of defocus in any given local patch of any individual 
natural image. Furthermore, even for a camera with a high quality achromatic prime lens, the residual 
chromatic aberrations are sufficient to estimate the sign of defocus with good accuracy. 
 
Sign identification could be further improved by using data about the camera’s current focus distance. For 
example, if the lens is focused at 2.0 m (0.5 D) and the estimated defocus magnitude is 0.75 D, the sign of 
the focus error must be negative (i.e., the lens must be focused behind the target), because a target cannot 
be beyond infinity. 
 
An obvious question is how the algorithm is able to estimate defocus sign as well as it does given small 
chromatic aberrations of the Sigma prime lens (see Fig. 3c). There are two factors. The first is that there is a 
high spatial correlation between the images captured by the red and green channels, which effectively 
allows one channel to serve as a reference for the other (i.e., the large variation in power spectra across 
patches of natural image is largely removed by differencing the power spectra in the two channels). The 
second factor is that the AMA filters optimally compare details of the spectra in the two channels. In 
contrast, a Bayes optimal decision rule that uses only the total power in the two channels yields 
performance that is only a little above chance (55.3%). 
 
Importantly, once the optimal AMA filters and combination rules have been learned for a given camera 
system, the computations of the optimal defocus estimates are simple and efficient. Thus, a defocus 
estimate corresponding to a given patch of image can be obtained in a few milliseconds on a standard 
laptop computer. Presumably, if these computations were built into a camera’s firmware, they could be 
performed even faster. 
 
Also note that the performance levels presented here probably reflect the ‘worst-case’ scenario for defocus 
estimation in digital imaging systems. The optical quality was high (low aberrations), and thus the amount 
of the defocus information introduced by the optics was small compared to what would be introduced by 
lower quality lenses. For these reasons, we speculate that our algorithm is likely to produce even more 
accurate estimates of magnitude and sign in point-and-shoot and cell phone cameras. In addition, it should 
be possible to design high quality lens systems that are optimized for estimating defocus with the method 
described here. Finally, we note that because our method is image-based, it will operate in live-view mode 
and/or in digital video cameras. When paired with an appropriate control routine for autofocusing the lens, 
our optimal defocus estimation method may lead to improved, more flexible autofocusing performance. 
 
 

4. CONCLUSION 
 
The two most widely used autofocus techniques, phase detection and contrast measurement, have their 
strengths but both also have serious weaknesses. The method proposed here combines the advantages of 
both phase detection and contrast measurement autofocusing without suffering their disadvantages. This 
work demonstrates the potential value of taking algorithmic inspiration from biological science. 
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