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Figure S11. Response statistics with square weight matrices, which are often more convenient for modeling. Preferred 
features with different octave bandwidths have different aspect ratios. Thus, nominally matched square matrices are 
actually slightly mismatched for preferred features having octave bandwidths other than 1.2 (see Methods). A Preferred 
features in square weight matrices. B Stimulus-driven response standard deviation with narrowband normalization. 
Results for ‘matched’ square matrices are similar to the results with matched rectangular weight matrices presented in 
the main text. However, the 0.8 octave bandwidth preferred feature yields slightly higher stimulus-driven response 
variance and the 1.8 octave bandwidth feature yields slightly lower stimulus-driven variance than their rectangular 
counterparts. C Stimulus-driven response kurtosis with narrowband normalization. Results are very similar with square 
and rectangular weight matrices. D Response standard deviation with broadband normalization. E Response kurtosis 
with broadband normalization. Square weight matrices yield broadly similar results as rectangular weight matrices, and 
can probably be used for many applications interchangeably with rectangular matrices. 
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Supplement 1 
Expected stimulus discriminability for Gaussian response distributions 

 
Consider a neuron whose response can be modeled as a zero-mean Gaussian-distributed random 
variable  r  with standard deviation  σ E  such that 

   
r ∼ N 0,σ E

2( )            (S1) 

 
Let   r1  and   r2 be two random response samples. The response difference   u = r1 − r2  is also 
Gaussian distributed with a variance that is twice the variance of each of the i.i.d. responses 
 

  
u ~ N 0,2σ E

2( )           (S2) 

 
We are interested in the expected absolute difference 

  
E u⎡⎣ ⎤⎦ = E r1 − r2

⎡⎣ ⎤⎦  of two random 

responses. In general, the absolute value of a zero-mean Gaussian distributed random variable 

with variance  σ
2  obeys a half-normal distribution with mean 

 

2
π
σ  . 

 
Given that   u = r1 − r2  is a zero-mean Gaussian variable with variance   2σ E

2  , we have 

  
E r1 − r2
⎡⎣ ⎤⎦ =

2
π

2σ E = 2
π
σ E         (S3) 

 
If the neuron’s response is corrupted by encoding noise of variance   σ I

2  , then the expected 
discriminability across stimuli for this neuron is given by 

  

  
E SNR⎡⎣ ⎤⎦ =

E r1 − r2
⎡⎣ ⎤⎦
σ I

= 2
π
σ E

σ I

          (S4) 
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Supplement 2 
Expected stimulus discriminability for Laplace response distributions 

 
Consider a neuron whose response can be modeled as a zero-mean Laplace-distributed random 
variable  r  with standard deviation  σ E  such that 

   
r ∼ f r( ) = 1

2σ E

e
−

r

σ E 2 ,−∞ < r < ∞        (S5) 

 
Let   r1  and   r2 be two random response samples. The response difference   u = r1 − r2   is the 

difference of two i.i.d. responses. Let   u ∼ g u( )  

 
g u( ) = f x( )

−∞

∞

∫ f x − u( )dx

 

  

g u( ) = 1
2σ E

e
−

x

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

∞

∫
1

2σ E

e
−

x−u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dx  

  
g u( ) = 1

2σ E
2 e

−
x + x−u

σ E 2

−∞

∞

∫ dx                              (S6) 

 
The integral cannot be simply evaluated with an absolute value in the integrand. To remove the 
absolute value from the integrand, we split the integral depending on the values that  u   and  x  
take. We note that  g u( ) is even symmetric. Thus, solving the integral for all values of   u > 0   will 
provide the solution to the integral for all values of   u < 0 . Assuming that   u > 0 , then 

  x + x − u = u − 2x  when   −∞ < x < 0 ,  x + x − u = u  when   0 < x < u , and   x + x − u = 2x − u  when 

 u < x < ∞ . Evaluating for cases when   u > 0  yields 

  

g u( ) = 1
2σ E

2 e
2x−u

σ E 2

−∞

0

∫ dx + e
− u
σ E 2

0

u

∫ dx + e
−2x+u
σ E 2

u

∞

∫ dx
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                  u > 0

        = 1
2σ E

2

σ E

2 2
e

2x−u
σ E 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−∞

0

+ xe
−u

σ E 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

u

+
−σ E

2 2
e

−2x+u
σ E 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u

∞⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,   u > 0

        = 1
2σ E

2

σ E

2 2
e

−u
σ E 2 + ue

−u
σ E 2 +

σ E

2 2
e

−u
σ E 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                     u > 0

                            

  

        = 1
2σ E

2

σ E

2
e

−u
σ E 2 + ue

−u
σ E 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,                                            u > 0    (S7) 

Given that  g u( ) is even-symmetric, we can replace  u  with  u  in Equation S7 

  

g u( ) = 1
2σ E

2

σ E

2
e

− u

σ E 2 + u e
− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                             (S8) 
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After distributing the leading scale factor   1/σ E
2  and rearranging terms, we obtain an function where 

the two terms in the sum are the expressions for a Laplace distribution and a bilateral Gamma 
distribution 

   

g u( ) = 1
2

1

2σ E

e
− u

σ E 2

Laplace distribution! "## $##

+ 1

2σ E

u

σ E 2
e

− u

σ E 2

Bilateral Gamma Distribution! "### $###⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (S9) 

Recall that we are interested in the expectation of the absolute value of   u = r1 − r2  , not the 

expectation of   u = r1 − r2  itself. Computing the expectation 
 
E u⎡⎣ ⎤⎦  using  g u( )  from the definition of 

expectation 

 
E u⎡⎣ ⎤⎦ = u

−∞

∞

∫ g u( )du   

  

E u⎡⎣ ⎤⎦ =
1
2

u
−∞

∞

∫
1

2σ E

e
− u

σ E 2 + 1
2σ E

u

σ E 2
e

− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

du  

 
Noting that the integrand is an even function means that twice the integral from zero to infinity 
equals the integral from negative infinity to infinity 
 

  

E u⎡⎣ ⎤⎦ =
u

2σ E

e
− u

σ E 2 + 1
σ E

2 u
2
e

− u

σ E 2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟0

∞

∫ du  

 
On the positive real line, we can drop the absolute value symbols 

  

E u⎡⎣ ⎤⎦ =
u
2σ E

e
−u

σ E 2 + 1
σ E

2 u2e
−u

σ E 2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0

∞

∫ du

 

Splitting the integral

 

  
E u⎡⎣ ⎤⎦ =

1
2σ E

ue
−u

σ E 2 du +
0

∞

∫
1
σ E

2 u2e
−u

σ E 2 du
0

∞

∫      (S10) 

 
Each of the two definite integrals in equation S6 can be computed with the standard result 
 

  
une−au du = n!

an+1 ,n∈W ,a > 0
0

∞

∫   
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Plugging in 

  

E u⎡⎣ ⎤⎦ =
1

2σ E

1

1
σ E 2

⎛

⎝
⎜

⎞

⎠
⎟

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+ 1
σ E

2

2

1
σ E 2

⎛

⎝
⎜

⎞

⎠
⎟

3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
Simplifying terms 
 

  

E u⎡⎣ ⎤⎦ =
1

2σ E

σ E
2

2
⎡

⎣
⎢

⎤

⎦
⎥ +

1
σ E

2

2σ E
3

2 2

⎡

⎣
⎢

⎤

⎦
⎥

          =
σ E

2 2
+
σ E

2

          = 3
2 2

σ E

 

 
 
Therefore, the mean absolute difference between two i.i.d. mean-zero Laplace random variables of 
standard deviation  σ E  is               

  
E u⎡⎣ ⎤⎦ = E r1 − r2

⎡⎣ ⎤⎦ =
3

2 2
σ E        (S11) 

 
For internal noise of standard deviation  σ I , the expected stimulus discriminability across all stimuli 
is given by 

  
E SNR⎡⎣ ⎤⎦ =

E r1 − r2
⎡⎣ ⎤⎦
σ I

= 3
2 2

σ E

σ I

       (S12) 
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