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Abstract
Understanding how nervous systems exploit task relevant properties of sensory stimuli

to perform natural tasks is fundamental to the study of perceptual systems. However, there
are few formal methods for determining which stimulus properties are most useful for
a given task. As a consequence, it is difficult to develop principled models for how to
compute task-relevant latent variables from natural signals, and it is difficult to evaluate
descriptive models fit to neural response. Accuracy Maxmization Analysis (AMA) is a
recently developed Bayesian method for finding the optimal task-specific filters (receptive
fields). Here, we introduce AMA-Gauss, a new faster form of AMA that incorporates the
assumption that the class-conditional filter responses are Gaussian distributed. Next, we
use AMA-Gauss to show that its assumptions are justified for two fundamental visual tasks:
retinal speed estimation and binocular disparity estimation. Then, we show that AMA-
Gauss has striking formal similarities to popular quadratic models of neural response: the
energy model and the Generalized Quadratic Model (GQM). Together, these developments
deepen our understanding of why the energy model of neural response have proven useful,
improve our ability to evaluate results from subunit model fits to neural data, and should
help accelerate psychophysics and neuroscience research with natural stimuli.

1. Introduction

Perceptual systems capture and process sensory stimuli to obtain information about be-
haviorally relevant properties of the environment. Characterizing the features of sensory
stimuli and the processing rules that nervous systems use is central to the study of percep-
tual systems. Most sensory stimuli are high-dimensional, but only a small set of stimulus
features are relevant for any particular task. Thus, perceptual and neural processing in
particular tasks is driven by sets of features that occupy a lower dimensional space (i.e.
can be described more compactly) than the stimuli themselves. These considerations have
motivated perception and neuroscience researchers to develop methods for dimensionality
reduction that characterize the statistical properties of proximal stimuli, that describe the
responses of neurons to those stimuli, and that specify how those responses could be decoded
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[3, 11, 12, 24, 28, 37, 43, 49, 45, 44, 50, 40, 31, 39]. However, many of these methods
are task-independent; that is, they do not explicitly consider the sensory, perceptual, or
behavioral tasks for which the encoded information will be used. Empirical studies in
psychophysics and neuroscience often focus on the behavioral limits and neurophysiolog-
ical underpinnings of performance in specific tasks. Thus, there is a partial disconnect
between task-independent theories of encoding and common methodological practices in
psychophysics, and sensory and systems neuroscience.

Task-specific normative models prescribe how best to perform a particular task. Task-
specific normative models are useful because they provide principled hypotheses about
i) the stimulus features that nervous systems should encode and ii) the processing rules
that nervous systems should use to decode the encoded information. Normative models in
widespread use are often not directed at specific tasks. Methods for fitting neural response
cannot generally be interpreted with respect to specific tasks. Accuracy Maximization
Analysis (AMA) is a Bayesian method for finding the stimulus features that are most useful
for specific tasks [21, 8]. In conjunction with carefully calibrated natural stimulus databases,
AMA has contributed to the development of normative models of several fundamental tasks
in early- and mid-level vision [4, 5, 6, 7], by determining the encoding filters (receptive
fields) that support optimal performance in each task. These normative models have, in turn,
predicted major aspects of primate neurophysiology and human psychophysical performance
with natural and artificial stimuli [6, 7].
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Figure 1: Linking scientific subfields. Perception science benefits when links are drawn
between psychophysical and neuroscience studies of particular tasks, task-agnostic statistical
procedures that fit models to data, and task-specific normative methods that determine which
models are best. The current work develops formal links between the energy model for
describing neural response, the Generalized Quadratic Model (GQM) for fitting neural
response, and AMA-Gauss for determining the neural response properties that best serve a
particular task.

The primary theoretical contribution of this manuscript is to establish formal links
between normative models of specific tasks and popular descriptive models of neural
response (Fig. 1). To do so, we first develop a new form of AMA called AMA-Gauss,
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which incorporates the assumption that the latent-variable-conditioned filter responses are
Gaussian distributed. Then, we use AMA-Gauss to find the filters (receptive fields) and
pooling rules that are optimal with natural stimuli for two fundamental tasks: estimating
the speed of retinal image motion and estimating binocular disparity [6, 7]. For these two
tasks, we find that the critical assumption of AMA-Gauss is justified: the optimal filter
responses to natural stimuli, conditioned on the latent variable (i.e. speed or disparity),
are indeed Gaussian distributed. Then, we show that this empirical finding provides a
normative explanation for why neurons that select for motion and disparity have been
productively modeled with energy-model-like (i.e. quadratic) computations [34, 35, 36, 13,
14]. Finally, we recognize and make explicit the formal similarities between AMA-Gauss and
the Generalized Quadratic Model (GQM) [40, 54], a recently developed method for neural
systems identification. These advances may help bridge the gap between empirical studies
of psychophysical and neurophysiological tasks, methods for neural systems identification,
and task-specific normative modeling (Fig. 1).

In addition to these theoretical contributions, the development of AMA-Gauss represents
a technical advance. The major drawback of AMA is its computational expense. Its compute-
time for filter learning is quadratic in the number of stimuli in the training set, rendering the
method impractical for large-scale problems without specialized computing resources. We
demonstrate, both analytically and empirically, that AMA-Gauss reduces compute-time for
filter learning from quadratic to linear. Thus, for tasks for which the critical assumption of
AMA-Gauss is justified, AMA-Gauss can be of great practical benefit.

Background

ENERGY MODEL

Energy models have been remarkably influential in visual neuroscience. The standard
energy model posits two Gabor-shaped subunit receptive fields, the responses of which are
squared and then summed (Fig. 2.A). These computations yield decreased sensitivity to
the local position of stimulus features (i.e. spatial phase) and increased sensitivity to task-
relevant latent variable. Energy models have been widely used to describe the computations
of neurons involved in coding retinal image motion and binocular disparity [1, 13, 14].
However, the motion-energy and disparity-energy computations are primarily descriptive
models of a neuron’s response properties. The energy model does not make explicit how
neural responses should be decoded into estimates.

Under what circumstances would energy-model-like computations be optimal? Energy-
model-like computations would be optimal if quadratic pooling is necessary for determining
the likelihood of the task-relevant latent variable. We show below that for retinal speed
and binocular disparity estimation, two tasks classically associated with the energy model,
quadratic pooling is indeed necessary to optimally decode the task-relevant latent variable
(see Section 3). Therefore energy-model-like computations are optimal for these tasks.
AMA-Gauss is specifically designed to find the receptive fields and pooling rules that
optimize performance under these conditions. It is thus likely to help accelerate the develop-
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ment of normative models of other tasks for which the energy model has provided a useful
description.
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Figure 2: Computations of an energy model neuron, a GQM model neuron, and an AMA-
Gauss likelihood neuron. All three have quadratic computations at their core. The energy
model and the GQM describe the computations that neurons perform. AMA-Gauss pre-
scribes the computations that neurons should perform to optimize performance in a specific
task. A The standard energy model assumes two Gabor-shaped orthogonal subunit filters
(receptive fields) fgbr to account for a neuron’s response. The response of an energy model
neuron RE is obtained by adding the squared responses of the filters. B The GQM fits
multiple arbitrarily-shaped orthogonal subunit receptive fields f⊥ that best account for a
neuron’s response. The response of a GQM model neuron RGQM is obtained by pooling
the squared (and linear, not shown) responses of the subunit filters via a weighted sum, and
passing the sum through an output nonlinearity. C AMA-Gauss finds the optimal subunit
filters fopt and quadratic pooling rules for a specific task. Unlike standard forms of the energy
model and the GQM, AMA-Gauss incorporates contrast normalization and finds subunit
filters that are not necessarily orthogonal. The response RL

u of an AMA-Gauss likelihood
neuron represents the likelihood of latent variable Xu. The likelihood is obtained by pooling
the squared (and linear, not shown) subunit filter responses, indexed by i and j,

via a weighted sum (Eq. (20)).
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GENERALIZED QUADRATIC MODEL (GQM)

The standard energy model assumes that the responses of certain neurons can be accounted
for by two Gabor-shaped subunit receptive fields. Real neurons are not constrained to have
only two subunit receptive fields, nor are their shapes constrained to be Gabor-shaped. The
Generalized Quadratic Model (GQM) fits multiple arbitrarily-shaped subunit filters and
quadratic pooling rules that best account for a neuron’s response (Fig. 2.B; [40]). The GQM
is a specific example of a large class of models designed for neural systems identification,
collectively known as ’subunit models’. The spike triggered average (STA), spike triggered
covariance (STC), and the generalized linear model (GLM) are popular examples of this
class of models. The goal of these models is to provide a computational level description of
a neuron’s computations that can predict its responses to arbitrary stimuli.

Unfortunately, a tight description of a neuron’s computations does not necessarily provide
insight about how (or whether) that neuron and its computations subserve a specific task;
after a subunit model has been fit, the purpose of the neuron’s computations is often unclear.
Thus, although methods for neural systems identification are essential for determining what
the components of nervous systems do, they are unlikely to determine why they do what
they do. One way to address this issue is to develop normative frameworks (i) that determine
the computations that are optimal for particular tasks and (ii) that share the same or similar
functional forms as popular methods for describing neural response.

AMA-Gauss is a normative method that is designed to find the filters (receptive fields)
and quadratic pooling rules that are optimal for specific sensory-perceptual tasks (Fig. 2.C;
see 2). AMA-Gauss has a functional form that is closely related to the energy model and the
GQM, but it has a different aim. Rather than describing what a neuron does, it prescribes
what neurons should do. In fact, given a hypothesis about the function of a particular neuron,
AMA-Gauss can predict the subunit filters and pooling rules that will be recovered by the
GQM. The development of closely related normative models and methods for neural systems
identification is likely to enhance our ability to interpret fits to neural data and accelerate
progress in psychophysical and neuroscientific research.

2. Methods
This section formally develops AMA-Gauss. To provide context for this technical contri-
bution, we first review the setup and main equations for AMA [21]. Then, we derive the
main equations for AMA-Gauss, provide a geometric intuition for how it works, and discuss
practices for best use. Readers that are more interested in the scientific implications, and
less interested in the mathematical formalisms, can skip ahead to Results.

Accuracy Maximization Analysis

The goal of AMA is to find the filters (receptive fields) that extract the most useful stimulus
features for a particular task. Consistent with real biological systems, AMA filters are
corrupted by response noise, and it places no constraints on the orthogonality of its filters.
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AMA searches for the optimal filters with a closed form expression for the cost that relies on
a Bayes optimal decoder. The filters are constrained to have unit magnitude (||f|| = 1.0). The
expression for the cost requires the specification of five factors (see Fig 3.A). These factors
are i) a well defined task (i.e. a latent variable to estimate from high-dimensional stimuli),
ii) a labeled training set of stimuli, iii) a set of encoding filters, iv) a response noise model,
v) and a cost function (Fig. 3.A). The training set specifies the joint probability distribution
P
(
X, s

)
between the latent variable X and the stimuli s (Fig. 3.B) and implicitly defines

the prior P
(
X
)

=
∑

sP
(
X, s

)
over the latent variable (see Discussion). If the training set

is representative, results will generalize well to stimuli outside the training set.
For any particular filter set, the matched Bayes optimal decoder provides the cost by

computing the posterior probability over the latent variable P(X|R), reading out the optimal
estimate from the posterior, and then assigning a cost to the error. The steps for finding the
optimal task-specific filters are: i) select a particular stimulus skl from the labeled training
set, ii) obtain a set of noisy filter responses R

(
k, l
)

from a particular (possibly non-optimal)
set of filters, iii) use the optimal non-linear decoder g(.) to obtain the optimal estimate X̂opt

and its expected cost C̄kl, iv) repeat for each stimulus and compute the average cost across
all stimuli in the training set, v) update the filters to reduce the cost, vi) repeat until the
average cost is minimized. The optimal task-specific filters fopt are those that minimize the
cost (Fig. 3.B).
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Figure 3: Accuracy Maximization Analysis. A Factors determining the optimal decoder
used by AMA during filter learning. B Steps for finding optimal task-specific filters via
AMA.

BAYES OPTIMAL DECODER AND FILTER RESPONSE MODEL

The Bayes optimal decoder gives a closed form expression for the cost for any filter or set
of filters, given the training stimuli. The posterior probability of latent variable Xu given the
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noisy filter responses R
(
k, l
)

to stimulus skl is given by Bayes’ rule

P
(
Xu|R(k, l)

)
=

P
(

R(k, l)|Xu

)
P
(
Xu

)
∑Nlvl

i=1 P
(

R(k, l)|Xi

)
P
(
Xi

) (1)

where Nlvl is the number of latent variable level, and l indexes the stimuli having latent
variable value Xk. The conditional distribution of noisy responses given the latent variable
is

P
(

R|Xu

)
=

Nu∑
v=1

P
(

R|suv
)
P
(
suv|Xu

)
(2)

where Nu is the number of stimuli having latent variable level Xu, and v indexes training
stimuli having that latent variable value. Conveniently, P(suv|Xu) and P(Xu) are deter-
mined by the training set; P(suv|Xu) = 1

Nu
is the probability of particular stimulus v with

latent variable Xu given that there are Nu such stimuli, and P(Xu) = Nu

N
is the fraction of

all stimuli having latent variable Xu . Therefore, Equation 1 reduces to

P
(
Xu|R(k, l)

)
=

∑Nu

v=1P
(

R(k, l)|suv
)

∑Nlvl

i=1

∑Ni

j=1P
(

R(k, l)|sij
) (3)

Equation 3 indicates that the posterior probability is given by the sum of the within-level
stimulus likelihoods, normalized by the sum of all stimulus likelihoods.

Our aim is to understand task-specific information processing in biological systems.
Thus, the response noise model should be consistent with the properties of biological
encoders. AMA uses scaled additive (e.g. Poisson-like) Gaussian noise, a broadly used
model of neural noise in early visual cortex [20]. Equations 4-7 define the response model,
and specify the distribution of noisy filter responses P

(
R|suv

)
to each stimulus. For an

individual filter ft from set of filters f = [f1, f2, ..., fq] (where q is the number of filters), the
mean response rt, noisy response Rt, and noise variance σ2

t to stimulus suv having latent
variable value Xu are

ruv,t = fTt suv (4)
Ruv,t = ruv,t + ηt (5)

ηt ∼ N
(
0, σ2

uv,t

)
(6)

σ2
uv,t = α|ruv,t|+ σ2

0 (7)

where η is a noise sample, α is the fano factor, and σ2
0 is baseline noise variance. The

proximal stimulus s = x−x̄
||x−x̄|| is contrast-normalized consistent with standard models [2, 23],

where x is a (possibly noise corrupted) intensity stimulus. If q filters are considered
simultaneously, the response distributions P

(
R|s
)
, and the variables in Equations 4-7
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become q-dimensional: mean response vector r =
[
r1, r2, ..., rq

]
, noisy response vector

R =
[
R1, R2, ..., Rq

]
, and response noise covariance matrix Λ.

The posterior probability distribution over the latent variable given the noisy filter
responses to any stimulus in the training set is fully specified by Equations 3-7. The next
step is to define the cost associated with a noisy response to an individual stimulus. The cost
is given by

Ckl =
∑
X

[
γ
(
X̂opt
kl , X

)
P
(
X|R(k, l)

)]
(8)

where γ(.) is an arbitrary cost function and X̂opt
kl is the optimal estimate associated with

noisy response R
(
k, l
)
. The overall cost for a set of filters is the expected cost for each

stimulus averaged over all stimuli

C̄ =
1

N

N∑
k,l

ER(k,l)[Ckl] (9)

The goal of AMA is to obtain the filters f that minimize the overall cost

fopt = argmin
f

C̄ (10)

where fopt are the optimal filters.
A single evaluation of the posterior probability distribution (Eq. 3) for each stimulus in

the training set requires O
(
N2Nlvl

)
operations where N is the total number of stimuli and

Nlvl is the number of latent variable levels in the training set. As noted earlier, this compute-
time makes AMA impractical for large scale problems without specialized computing
resources.

There are at least two methods for achieving significant computational savings in opti-
mization problems: employing models with strong parametric assumptions, and employing
stochastic gradient descent routines. Both methods have drawbacks. Models with strong
parametric assumptions are only appropriate for cases in which the assumptions approxi-
mately hold. Stochastic gradient descent routines are noisy and may not converge to the
optimum filters. We have previously developed AMA-SGD, a stochastic gradient descent
routine for AMA [8]. Here, we develop AMA-Gauss, a model with strong parametric
assumptions.

AMA-Gauss

In this section, we first introduce AMA-Gauss and highlight its advantages over AMA.
Subsequently, we provide expressions for AMA-Gauss likelihood function, L2 and L0 cost
functions, and their gradients. We believe this is a valuable step towards making AMA a
more practical tool in vision research.
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AMA-GAUSS: CLASS-CONDITIONAL GAUSSIAN ASSUMPTION

AMA-Gauss is a version of AMA that makes the parametric assumption that the filter
responses are Gaussian distributed when they are conditioned on a particular value of the
latent variable

P
(

R|Xu

)
= N

(
R;µu,Σu

)
(11)

where R are responses to stimuli having latent varible level Xu,

µu =
1

Nu

Nu∑
v=1

fT suv = fT su (12)

is the class-conditional mean of the noisy filter responses and

Σu =
1

Nu

[ Nu∑
v=1

(
(fT suv − fT su)(fT suv − fT su)T

) ]
+ Λ (13)

is the class-conditional covariance of the noisy filter responses. The first term in Eq. 13
is the class-conditional covariance of the expected filter responses. The second term in
Eq. 13, Λ, is the covariance matrix of the filter response noise η ∼ N (0,Λ). There are
two major reasons for making the Gaussian assumption. First, if the response distributions
are Gaussian, then AMA-Gauss will return the same filters as AMA while simultaneously
providing huge savings in compute-time. Second, the assumption is justified for at least two
fundamental visual tasks in early vision (see Results; [6, 7]). With time, we speculate that
similar statements will be justified for other sensory-perceptual tasks.

Under the AMA-Gauss assumption, the posterior probability (Eq 1) of latent variable
Xu is

P
(
Xu|R(k, l)

)
=

N
(

R(k, l);µu,Σu

)
∑Nlvl

i=1 N
(

R(k, l);µi,Σi

) (14)

where Nlvl is the number of latent variable levels. The AMA-Gauss posterior (Eq 14),
has a simpler form than the AMA posterior (Eq 3). Hence, whereas a single evaluation
of the AMA posterior probability distribution requires O

(
N2Nlvl

)
operations (Eq 3), the

AMA-Gauss posterior requires onlyO
(
NNlvl

)
operations where N is the number of stimuli

in the training set (see Section 3). This reduction in compute-time substantially improves
the practicality of AMA when the Gaussian assumption is justified. Even if the Gaussian
assumption is not justified, AMA-Gauss is guaranteed to make the best possible use of
first- and second-order conditional response statistics, and could thus provide a decent
initialization at low computational cost.
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AMA-GAUSS: DERIVATIONS OF THE LIKELIHOOD FUNCTION, COSTS, AND

GRADIENTS

Analytic solutions for the optimal filters under AMA-Gauss (and AMA) are not available in
closed form. Here, we provide expressions for the AMA-Gauss likelihood function, L2 cost,
L0 cost, and their gradients.

The maximum likelihood AMA-Gauss encoding filters fL are those that simultaneously
maximize the likelihood of the correct latent variable Xk across all stimuli in the training set.
Stimuli having latent variable value Xk are indexed by l, and the ith stimulus in the training
set is denoted (ki, li). The likelihood function of the AMA-Gauss filters is

L(f) =
N∏
i=1

[(
2π
)− d

2 |Σki|−
1
2 exp

[
− 1

2

(
R(ki, li) − µki

)T
Σ−1
ki

(
R(ki, li) − µki

)]]
(15)

The maximum likelihood filters can be determined by maximizing the likelihood function
or, equivalently, minimizing the negative log-likelihood function

fL = argmin
f

[
− logL(f)

]
In practice, the expected negative log-likelihood is easier to minimize. Complete derivations
of the likelihood function, the expected log-likelihood function, and closed form expressions
for the associated gradients are provided in Appendix A. These expressions can be used to
estimate the maximum-likelihood filters via gradient descent.

Next, we derive the AMA-Gauss cost for two popular cost functions for which the
minimum mean squared error (MMSE) estimate and maximum a posteriori (MAP) are
optimal: the L2 and L0 cost. The cost function specifies the penalty assigned to different
types of error. For the L2 (i.e. squared error) cost function, the expected cost for each
stimulus skl (Eq 9) is

C̄kl = ER(k,l)

[
(X̂opt

kl −Xk)
2
]

(16)

where the optimal estimate X̂opt
kl =

∑Nlvl

u=1 XuP
(
Xu|R(k, l)

)
is the mean of the posterior.

For the L0 (i.e. 0,1) cost function, the expected cost across all stimuli is closely related to
the KL-divergence of the observed posterior and an idealized posterior with all its mass at the
correct latent variable Xk; in both cases, cost is determined only by the posterior probability
mass at the correct level of the latent variable [21, 8]. Here, the expected KL-divergence per
stimulus is equal to the negative log-posterior probability at the correct level [21]

C̄kl = ER(k,l)

[
− logP

(
Xk|R(k, l)

)]
(17)

In a slight abuse of terminology, we refer to this divergence as the L0 or KL-divergence cost.
The gradient of the total expected cost across all stimuli can be evaluated by calculating

the gradient of the cost for each stimulus∇fC̄kl (see Eq (9)). Hence, the gradient of the total
expected cost is

∇fC̄ =
1

N

N∑
k,l

∇fC̄kl (18)
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Figure 4: Relationship between conditional filter response distributions, likelihood, and
posterior probability. Two hypothetical cases are considered, each with three latent variable
values. A One-dimensional (i.e. single filter) Gaussian conditional response distribu-
tions, when information about the latent variable is carried only by the class-conditional
mean; distribution means, but not variances, change with the latent variable. The blue
distribution represents the response distribution to stimuli having latent variable value
Xk. The red and green distributions represent response distributions to stimuli hav-
ing different latent variables values Xu 6= Xk. The blue dot represents the likelihood
L
(
Xu;R1

(
k, l
))

= N
(
R1

(
k, l
)
;µu,Σu

)
that observed noisy filter response R1

(
k, l
)

to
stimulus sk,l was elicited by a stimulus having latent variable level Xu = Xk. Red and green
dots represent the likelihoods that the response was elicited by a stimulus having latent
variable Xu 6= Xk (i.e. by a stimulus having the incorrect latent variable value). B Posterior
probability over the latent variable given the noisy observed response in A. The posterior
probability of the correct latent variable value (in this case, Xk) is given by the likelihood of
the correct latent variable value normalized by the sum of all likelihoods. Colored boxes
surrounding entries in the inset equation indicate the likelihood of each latent variable. C
Two-dimensional (i.e. two filter) Gaussian response distributions. Each ellipse represents
the joint filter responses to all stimuli having the same latent variable value. The second filter
improves decoding performance by selecting for useful stimulus features that the first filter
does not. The black dot near the center of the blue ellipse represents an observed noisy joint
response R

(
k, l
)

to stimulus sk,l. The likelihood L
(
Xu; R

(
k, l
))

= N
(

R
(
k, l
)
;µu,Σu

)
that the observed response was elicited by a stimulus having latent variable value Xu is ob-
tained by evaluating the joint Gaussian at the noisy response; in this case, the product of the
likelihoods represented by the blue dots on the single filter response distributions. D-F Same
as A-C, but where information about the latent variable is carried by the class-conditional
covariance instead of the mean; ellipse orientation, but not location, changes with the latent
variable. AMA-Gauss finds the filters yielding conditional response distributions that are as
different from each other as possible, given stimulus constraints.

The gradient of the cost for each stimulus can be evaluated by calculating the gradient of the
posterior probability. Complete derivations of the cost and the gradient of the cost for the
L2 and L0 cost functions are given in Appendix B and Appendix C respectively.
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Cost is minimized when responses to stimuli having different latent variable values
overlap as little as possible. The cost functions (i.e. max-likelihood, L0 cost, L2 cost)
exert pressure on the filters to produce class-conditional response distributions that are
as different as possible given the constraints imposed by the stimuli. Hence the optimal
filters will i) maximize the differences between the class-conditional means or covariances
and ii) minimize the generalized variance for each class-conditional response distribution.
(Generalized variance is a measure of overall scatter, represents the squared volume of the
ellipse, and is given by the determinant of the covariance matrix.)

AMA-GAUSS: GEOMETRIC INTUITION

Fig. 4 provides a geometric intuition for the relationship between the filter response distribu-
tions, the likelihood, and the posterior probability distribution for two simple hypothetical
cases. Both cases have three latent variable values. In one case, the information about
the latent variable is carried by the class-conditional mean (Fig. 4.A-C). In the other case,
the information about the latent variable is carried by the class-conditional covariance
(Fig. 4.D-F). In all cases, the class-conditional responses to stimuli having the same latent
variable value are Gaussian distributed. With a single filter, the response distributions are
one-dimensional (Fig. 4.A,D). For any observed noisy response R, the likelihood of a
particular level of the latent variable Xu is found by evaluating its response distribution at
the observed response (blue dot; Fig. 4.A,D). The posterior probability of latent variable Xu

is obtained by normalizing with the sum of the likelihoods (blue, red, and green dots; Fig.
4.B,E). With two filters, the response distributions are two-dimensional (red, blue, and green
ellipses with corresponding marginals; Fig. 4.C,F). The second filter increases the posterior
probability mass at the correct value of the latent variable (not shown) because the second
filter selects for useful stimulus features that the first filter does not. These hypothetical
cases illustrate why cost is minimized when mean or covariance differences are maximized
between classes and generalized variance is minimized within classes. The filters that make
the response distributions as different as possible make it as easy as possible to decode the
latent variable.

AMA-GAUSS: BEST PRACTICES

The AMA-Gauss method developed here does not automatically determine the number of
stimuli to train on, or the number of task-specific filters to learn; these choices are left to the
user.

To obtain representative results (i.e. to minimize sampling error) the training set must be
of sufficient size. AMA-Gauss uses the sample mean and covariance to approximate the
Gaussian distributions of filter responses conditional on each value of the latent variable (Eq.
(11)). Training sets with at least 250 stimuli per level tend to give representative results.

To extract all task-relevant information from each stimulus a sufficient number of
receptive fields must be learned. In general, the best practice is to learn filters until the
change in the value of the total cost is negligible [21]. The current paper aims to demonstrate
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the properties and usefulness of AMA-Gauss rather than determine the best number of
filters; for clarity, we show only four filters for each task (see section 3). Previous work has
shown that, for the two tasks considered here, eight filters are required to capture nearly all
task-relevant information [6, 7]. The results presented in this paper hold for all eight filters,
but we show only four for ease of presentation.

3. Results
Retinal speed estimation and binocular disparity estimation are canonical visual tasks. Accu-
rate and precise estimation of retinal image motion is critical for the accurate estimation of
object motion and self motion through the environment. Accurate and precise estimation of
binocular disparity is critical for the accurate estimation of depth and the control of fixational
eye movements. Although of fundamental importance for mobile seeing organisms, both
tasks are difficult in natural conditions because of the enormous variability and complexity
in natural images.

The plan for the results section is as follows. First, we use AMA-Gauss1 to find the
receptive fields that are optimal for estimating speed and disparity from local patches of
natural images. Second, we compare AMA-Gauss and AMA and show that both methods
(i) learn the same filters and (ii) converge to the same cost for both tasks. Third, we verify
that AMA-Gauss achieves the expected reductions in compute-time: filter-learning with
AMA-Gauss is linear whereas AMA is quadratic in the number of stimuli in the training
set. Fourth, we show that the class-conditional filter responses are approximately Gaussian,
thereby justifying the Gaussian assumption for these tasks. Fifth, we show how contrast
normalization contributes to the Gaussianity of the class-conditional responses. Sixth, we
explain how the filter response distributions determine the likelihood functions and optimal
pooling rules. Seventh, we explain how these results provide a normative explanation for
why energy-model-like computations describe the response properties of neurons involved
in these tasks. Eighth, and last, we establish the formal relationship between AMA-Gauss
and the GQM, a recently developed method for neural systems identification.

For each task, we obtained an existing labeled training set of natural photographic stimuli
consisting of approximately ten thousand randomly sampled stimuli. All stimuli subtended
1 deg of visual angle. Perspective projection, physiological optics, and the wavelength
sensitivity, spatial sampling, and temporal integration functions of the foveal cones were
accurately modeled. Input noise was added to each stimulus with a noise level just high
enough to mask retinal image detail that would be undetectable by the human visual system
[53]. Both training sets had flat prior probability distributions P

(
X
)

over the latent variable
(see Discussion). The training set for speed estimation consisted of 10500 stimuli (10500
stimuli=500 stimuli/level x 21 levels; [7]). Retinal speeds ranged from -8 deg/sec to +8
deg/sec; negative and positive speeds correspond to leftward and rightward drifting movies.
Each stimulus had a duration of 250ms. The training set for disparity estimation consisted of
7600 stimuli (7600 stimuli=400 stimuli/level x 19 levels; [6]). Binocular disparities ranged

1. AMA-Gauss software (Matlab) is available at https://www.github.com/burgelab/AMA
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from -16.875 arcmin to +16.875 arcmin; negative and positive disparities correspond to
uncrossed and crossed disparities. (Note that although these training sets have a discrete
number of latent variable values, AMA filters can be learned with discrete- or with real-
valued latent variables.) For extensive additional details on these training sets and for ideal
observer performance in these tasks, please see [6, 7]. One important limitation of these
datasets is that all motion signals were rigid and that all disparity signals were planar. Future
work will examine the impact of non-rigid motion (e.g. looming) and local depth variation
(e.g. occlusion) on performance (see Discussion).
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Figure 5: Speed estimation task: filters, cost, compute time, and class-conditional response
distributions. A AMA-Gauss and AMA filters for estimating speed (-8 to +8 deg/sec)
from natural image movies are nearly identical; ρ > 0.96 for all filters. B The cost for
all the filters for both the models is identical. C Compute time for fifty evaluations of the
posterior probability distribution is linear with AMA-Gauss, and quadratic with the full
AMA model, in the training set size. D Same data as in C but on log-log axes. E,F Joint
filter responses, conditioned on each level of the latent variable, are approximately Gaussian
(also see below). Different colors indicate different speeds. Individual symbols represent
responses to individual stimuli. Thin black curves show that the filter response distributions,
marginalized over the latent variable P

(
R
)

=
∑Nlvl

u=1 P
(
R|Xu

)
P
(
Xu

)
, are heavier-tailed

than Gaussians (see Sections 3, 4)
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Figure 6: Disparity estimation task: filters, cost, compute time, and class-conditional
response distributions. A AMA-Gauss and AMA filters for estimating disparity from natural
stereo-images (-15 to +15 arcmin). B-F Caption format same as Fig. 5.B-F.

Before processing, retinal image stimuli for both tasks were vertically averaged under
a raised cosine window (0.5o at half-height). Vertically oriented receptive fields respond
identically to the original and vertically averaged stimuli, and canonical receptive fields for
both tasks are vertically oriented [6, 7]. Thus, the vertically averaged signals represent the
signals available to the the orientation column that would be most useful to the task. Future
work will examine the impact of off-vertical image features on performance.

Next, we used AMA-Gauss to find the optimal filters for both tasks. The results presented
below were obtained using the L0 cost function and constant, additive, independent filter
response noise. In general, we have found that the optimal filters are quite robust to the
choice of cost function when trained with natural stimuli [8]. Figure 5 shows results for
the retinal speed estimation task and Figure 6 shows results for the disparity estimation
task. AMA-Gauss and AMA learn nearly identical encoding filters (Fig. 5.A and 6.A;
ρ > 0.96) and exhibit nearly identical estimation costs (Fig. 5.B and 6.B). AMA-Gauss
also dramatically reduces compute time (Fig. 5.CD and 6.CD). With AMA, the time
required to learn filters increases quadratically with their number of stimuli in the training
set. With AMA-Gauss, filter learning time increases linearly with the number of stimuli.
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Finally, the class-conditional filter responses are approximately Gaussian (Fig. 5EF and
6EF), indicating that the Gaussian assumption is justified for both tasks. Thus, quadratic
computations are required to determine the likelihood of a particular value of the latent
variable (see below). After characterizing the conditional response distributions, the posterior
probability distribution over the latent variable P

(
X|R

)
can be obtained by straightforward

application of Bayes’ rule.

Response Normalization, Response Gaussianity, and Decoding Performance

Contrast varies significantly in natural stimuli. How does contrast normalization affect the
filter responses? For the class of problems considered here (e.g. retinal speed estimation,
binocular disparity estimation, and other energy-model-related tasks), neurophysiologically
plausible contrast normalization [2, 23] must be built into the filter response model (Eq.
4) for the class-conditional filter responses P

(
R|Xu

)
to be Gaussian distributed. (Note

that many different models of normalization are computationally equivalent [2, 23].) In
AMA-Gauss, the input stimulus s is a contrast normalized (||s|| ≤1.0) version of a (possibly
noise-corrupted) intensity stimulus x with mean intensity x̄. Luminance normalization
converts the intensity stimulus to a contrast stimulus c = x−x̄

x̄ by subtracting off and dividing
by the mean. Contrast normalization converts the contrast stimulus to a contrast normalized
signal with unit magnitude (or less) s = c√

nc250+
∑

i c2i
where c50 is an additive constant and n

is the dimensionality of (e.g. number of pixels defining) each stimulus. Here, we assumed
that the value of the additive constant is c50 = 0.0. The effect of the value of c50 has been
studied previously [6].

To examine the effect of contrast normalization on the class-conditional filter response
distributions, we computed the filter responses to the same stimuli with and without contrast
normalization. With contrast normalization, filter response distributions are approximately
Gaussian (Fig. 7.A,B,E,F). Without contrast normalization, filter response distributions
have tails much heavier than Gaussian (Fig. 7.C,D,G,H). (Note that AMA-Gauss learns
very similar filters with and without contrast normalization. Normalization does not change
which stimulus features should be selected; it changes only how the selected features are
represented.) Thus, biologically realistic normalization helps Gaussianize the conditional
response distributions. Related results have been reported by other groups [51, 29].

Contrast normalization not only Gaussianizes the response distributions; it also improves
performance. If response distributions are heavy-tailed and have strong peaks at zero,
then the Gaussian assumption is violated and attempts to decode the latent variable from
those responses suffer. Contrast normalization reduces the peak at zero, thereby reducing
decoding difficulty. Fig.8 compares decoding cost in the speed and disparity tasks with and
without contrast normalization and shows that failing to normalize harms performance. Thus,
contrast normalization improves task performance by decreasing kurtosis and increasing
response Gaussianity.

Subunit response models (e.g. the standard energy model, the GQM, and other LN
models) are widely used to describe and fit neurons. They do not generally incorporate
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Figure 7: Filter responses with and without contrast normalization. A Class-conditional
filter response distributions P

(
Rt|Xu

)
to contrast-normalized stimuli for each individual

filter and each level of the latent variable in the speed estimation task. For visualization,
responses are transformed to Z-scores by subtracting off the mean and dividing by the
standard deviation. Gaussian probability density is overlaid for purposes of comparison.
B Kurtosis of the two-dimensional conditional response distributions from filters 1 and 2
(violet; also see Fig. 5.E) and filters 3 and 4 (green; also see Fig. 5.F) for all levels of the
latent variable. A two-dimensional Gaussian has a kurtosis of 8.0. Kurtosis was estimated
by fitting a multidimensional generalized Gaussians via maximum likelihood methods. C,D
Same as A,B but without contrast normalization. E-H Same as A-D, but for the task of
disparity estimation.

normalization (see below; [1, 44, 40, 50]). This fact is unsurprising. Many laboratory
experiments use high contrast white noise stimuli to map neural receptive fields [25, 26].
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Figure 8: Decoding performance with and without contrast normalization. A Contrast
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task. The same result holds for different cost functions (e.g. squared error) and larger
number of filters. If eight filters are used in the disparity task, failing to contrast normalize
can decrease performance by ∼ 40%.

Linear subunit RF responses to Gaussian noise are guaranteed to be Gaussian, so the lack of
contrast normalization does not hurt performance in common laboratory conditions. With
natural signals, the failure to normalize can hurt performance. Perhaps this is one reason
why subunit models tend to generalize poorly to natural stimuli (but see [15]). It may be
useful to incorporate response normalization in future instantiations of these models.

Data-constrained Likelihood Functions

The class-conditional response distributions fully determine the likelihood function over
the latent variable for any joint filter response R to an arbitrary stimulus. When the class-
conditional response distributions are Gaussian, as they are here, the log-likelihood of latent
variable value Xu is quadratic in the encoding filter responses

logL
(
Xu; R

)
= logP

(
R|Xu

)
= −1

2

(
R − µu

)T
Σ−1
u

(
R − µu

)
+ ζu (19)

where ζu = −1
2

log |2πΣu|. (Note that the likelihood function over the latent variable (Eq.
19) is distinct from likelihood function over the AMA-Gauss filters (Eq. 15).) Carrying out
the matrix multiplication shows that the log-likelihood can be re-expressed as the weighted
sum of squared, sum-squared (and linear) filter responses

log
[
P
(
R|Xu

)]
=

q∑
i=1

wi,uRi +

q∑
ii=1

wii,uR
2
i +

q−1∑
i=1

q∑
j=i+1

wij,u

(
Ri + Rj

)2
+ ζ

′

u (20)
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where q is the number of filters and where the weights are functions of the class-conditional
mean and covariance for each value Xu of the latent variable [6, 7]. Specifically,

wi,u = Σ−1
u µu (21)

wii,u = −diag
(
Σ−1
u

)
+ 0.5Σ−1

u 1 (22)
wij,u = −0.5Σ−1

ij,u,∀ij where j > i (23)

ζ
′

u = −0.5µTuΣ−1
u µu + ζu (24)

where diag
(
.
)

is a function that returns the diagonal of a matrix and 1 is a column vector
of ones. (Note that in these equations i and j index different filters (see Fig. 2), not different
latent variables and stimuli, as they do elsewhere in this manuscript). These equations (Eqs.
20 - 24) indicate that the log-likelihood of latent variable value Xu is obtained by pooling
the squared (and linear) responses of each receptive field with weights determined by the
mean µu and covariance Σu) of the subunit responses to stimuli with latent variable Xu.

In the speed and disparity estimation tasks, nearly all of the information about the latent
variable is carried by the class-conditional covariance; the covariance of the filter responses
to natural stimuli changes significantly with changes in the latent variable (see Figs. 4.D-F,
5.EF, and 6.EF). Thus, the weights on the squared and the sum-squared filter responses
change dramatically with the value of the latent variable (Fig. 9). In the speed estimation
task, for example, the weights w34(X) on the sum-squared response of filter 3 and filter 4
peak at 0 deg/sec (see Fig 9.A). This peak results from the fact that the filter 3 and filter
4 response covariance is highest at 0 deg/sec (see Fig. 5.F; Eq.23). In contrast, very little
information is carried by the class-conditional means; the mean filter responses to natural
stimuli are always approximately zero. Hence, the weights on the linear subunit responses
are approximately zero (see Eq. 21, Fig. 4.A-C).

The filter response distributions determine the computations (i.e. quadratic pooling
rules and weights) required to compute the likelihood of different latent variable values.
If these computations (Eq. 20 - 24) are paired with an exponential output nonlinearity
and implemented in a neuron, the neuron’s response RL

u = L
(
Xu; R

)
would represent the

likelihood that a stimulus having a particular value Xu of the latent variable elicited the
observed filter responses R. This latent variable value Xu would be the preferred stimulus
of the likelihood neuron. We refer to this hypothetical neuron as an AMA-Gauss likelihood
neuron (see Eq. 20).

Four example likelihood functions are shown in Fig. 10.A, one for each of four stimuli
having a true speed of -4 deg/sec. Fig. 10.B shows four likelihood functions for stimuli
having a true speed of 0 deg/sec. Fig. 10.C,D show likelihood functions for stimuli having
-15 arcmin and 0 arcmin of binocular disparity, respectively. These plots show the likelihood
functions, but they are not the standard way of assessing the response properties of neurons
in cortex.

The response properties of neurons in cortex are more commonly assessed by their
tuning curves. Likelihood neuron tuning curves are obtained by first computing the mean
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Figure 9: Quadratic pooling weights for computing the likelihood. Weights on squared
and sum-squared filter responses (wii

(
X
)

and wij

(
X
)
) as a function of the latent variable.

Weights on the linear filter responses are all approximately zero and are not shown. A
Weights for speed estimation task. B Weights for disparity estimation task. Weights on
squared responses are at maximum magnitude when the variance of the corresponding filter
responses are at minimum. Weights on sum-squared responses are at maximum magnitude
for latent variables yielding maximum response covariance (see Figs. 5.EF and 6.EF).

likelihood neuron response across all natural stimuli having latent variable value Xk

R̄L
u

(
Xk

)
=

1

Nk

Nk∑
l=1

L
(
Xu; R

(
k, l
))

(25)

and then repeating for all values of the latent variable. Tuning curves for a population of
likelihood neurons R̄L(

X
)

having a range of preferred speeds are shown in Fig. 10.E. The
speed tuning curves are approximately Gaussian for preferred speeds near 0 deg/sec and
approximately log-Gaussian otherwise. Consistent with these results, neurons in area MT
have approximately log-Gaussian speed tuning curves, and have bandwidths that increase
systematically with speed [33]. It is also interesting to note that while quadratic computations
are required to optimally decode the latent variable directly from the filter responses (see
Fig. 5.EF), likelihood neuron responses are linearly separable in speed. Similar points can
be made about the disparity likelihood neurons (Fig. 10.F). The computations reported here
thus constitute a general recipe for how to construct selective, invariant neurons having an
arbitrary preferred stimulus (latent variable) from the responses of a small, well-chosen set
of receptive fields.

Linking AMA-Gauss and the Energy Model

Neural activity involved in many visual tasks has been productively modeled by energy-
model-like (i.e. quadratic) computations [16, 13, 41]. We have shown that in two classic
tasks (retinal speed and binocular disparity estimation), the class-conditional filter response
distributions to natural stimuli are approximately Gaussian distributed. In such cases,
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Figure 10: Likelihood functions for speed and disparity tasks. A Likelihood functions for
four randomly chosen natural image movies having true speeds of 4 deg/sec. Each likelihood
function represents the population response of the set of likelihood neurons, arranged by their
preferred speeds. To ease the visual comparison, the likelihood functions are normalized to
a constant volume by the sum of the likelihoods. B Same as A, but for movies with a true
speed of 0 deg/sec. C,D Same as A,B but for stereo-images with -7.5 arcmin and 0.0 arcmin
of disparity, respectively. E Tuning curves of speed-tuned likelihood neurons. For speeds
sufficiently different from zero, tuning curves are approximately log-Gaussian and increase
in width with speed. For near-zero speeds, tuning curves are approximately Gaussian. Each
curve represents the mean response (i.e. tuning curve) of a likelihood neuron having a
different preferred speed, normalized to a common maximum. Gray areas indicate 68%
confidence intervals. F Tuning curves of disparity-tuned likelihood neurons.

quadratic combinations of the filter responses are the optimal computations and yield the
likelihood of a particular value of the latent variable (Eq. 20). The weights are determined
by the filter responses to natural stimuli (see Section 2). Thus, if these computations
were instantiated in a neuron, then its response would represent the likelihood of latent
variable (Fig. 2.C). The current results therefore constitute a normative explanation for why
energy-model-like computations account for response properties of neurons involved in
these tasks.

Interestingly, in recent years, discrepancies have emerged between the properties of
neurons in cortex and the energy models that are often used to describe them [13, 44, 48].
Many of these discrepancies are a natural consequence of the optimal computations for
estimating disparity and motion from natural stimuli[6, 7]. For example, the responses
of motion- and disparity-selective neurons, have both been found to depend on multiple
excitatory and suppressive subunit receptive fields, rather than the two exclusively excitatory
subunit receptive fields posited by the energy model. Multiple subunit receptive fields have
increased potential to select task-relevant information from each stimulus. Excitatory and
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inhibitory weighting schemes are required to use the selected information optimally. The
quadratic computations in Eq. (20) specify exactly how to optimally weight and sum the
responses from multiple receptive fields to achieve selectivity for particular latent variable
values (also see Fig. 9). These computations yield more selective, invariant tuning curves
(and improved estimation performance) than those of the standard energy model [6, 7], and
follow directly from the normative framework employed here.

Linking AMA-Gauss and the GQM: Connecting Normative and Response Triggered
Analyses

In this section, we establish the formal similarities between AMA-Gauss and the Generalized
Model (GQM), a recently developed subunit model for neural systems identification [40, 54].
The goal of the GQM is to identify (fit) the subunit receptive fields that drive a neuron’s
response (Fig. 2.B). The goal of AMA-Gauss is to find the subunit receptive fields and
quadratic pooling rules that are best for a particular task (Fig. 2.C). AMA can thus generate
predictions about the subunit receptive fields that the GQM will recover from a neuron, under
the hypothesis that the neuron computes the likelihood of a task relevant latent variable.

The GQM assumes that a neuron’s spiking or intra-cellular voltage response to a stimulus
is given by

y ∼ P
(
f
(
Q(x)

))
where Q(x) = xTCx + bTx + a (26)

where y is the neural response, P (.) is the noise model, f(.) is a non-linearity, and λ =
f
(
Q(x)

)
is the mean response. In [40], the authors use maximum likelihood methods to

recover the parameters of the model given a set of stimuli, the neuron’s response to each
stimulus, and a noise model. In AMA-Gauss, the log-likelihood of latent variable Xu is
given by

l
(
Xu

)
= −1

2

(
R− µu

)T
Σ−1
u

(
R− µu

)
+ ζu (27)

where µu and Σu are the class-conditional response mean and covariance and ζu is a constant.
The noisy filter response vector R is given by the projection of the stimulus onto the filters f
plus noise (Eqs. (4),(5)). Hence, Eq ( 27) can be rewritten as

l
(
Xu

)
= −1

2

(
xT fΣ−1

u fTx− 2(µT
uΣ−1

u − ηTuΣ−1
u )fTx+

µT
uΣ−1

u µu − ηTuΣ−1
u ηu + 2ηTuΣ−1

u µu

)
+ ζu (28)

or l
(
Xu

)
= xTCx + bTx + a

where C = −1
2
fTΣ−1

u f is a rank-q matrix where q is the number of filters, bT = µT
uΣ−1

u fT −
ηTuΣ−1

u fT , and a = −1
2
µT
uΣ−1

u µu + 1
2
ηTuΣ−1

u ηu − ηTuΣ−1
u µu + ζu. (Parameter values under

the expected log-likelihood are provided in Appendix D). The parameters of the GQM
are therefore simple functions of the AMA-Gauss encoding filters f and their responses to
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natural stimuli, conditional on latent variable Xu. Given a hypothesis about the functional
purpose of a neuron’s activity, AMA-Gauss could predict the parameters that the GQM
would recover via response-triggered analyses.

The primary formal distinction between AMA-Gauss and the GQM is that AMA-Gauss
explicitly models noise in the encoding filter responses, whereas the GQM models noise
only after quadratic pooling of the filter responses; the GQM implicitly assumes noiseless
filter responses. When subunit responses are noiseless, all subunit receptive fields spanning
the same subspace (i.e. all linear filter combinations) provide an equivalent encoding. When
responses are noisy (as they are in all biological systems), the stimulus encodings provided
by different filters spanning the same subspace are no longer equivalent [8]. Future work
will examine whether this distinction between AMA and the GQM can be leveraged to
overcome a limitation common to all standard subunit models; namely, that their descriptions
of neurons are unique only up to the subspace spanned by the subunit receptive fields (but
see [27]).

4. Discussion

Accuracy Maximization Analysis (AMA) is a supervised Bayesian method for task-specific
dimensionality reduction; it returns the encoding filters (receptive fields) that select the
stimulus features that provide the most useful information about the task-relevant latent
variable [21]. In conjunction with carefully collected databases of natural images and scenes
and psychophysical experimental techniques, AMA has contributed to the development of
ideal observers for several fundamental sensory-perceptual tasks in early- and mid-level
vision [4, 6, 7, 21]. Unfortunately, AMA’s compute-time is high enough to render the
method impractical for large problems without specialized computing resources.

We have developed AMA-Gauss, which makes the assumption that the class-conditional
filter responses are Gaussian distributed and have shown that AMA-Gauss markedly reduces
compute-time without compromising performance when the assumption is justified. We
show that the assumption is justified for two fundamentally important visual tasks with
natural stimuli (see Fig. 5 and Fig. 6, [6, 7]). These results provide a normative explanation
for why energy model-like computations have proven useful in the study of motion and
disparity estimation and discrimination. We speculate that the assumption will prove justified
for other energy-model-related tasks in early vision (e.g. motion-in-depth estimation). AMA-
Gauss also has the same formal structure as the Generalized Quadratic Model (GQM) a
recently developed method for neural systems identification, raising the possibility that a
single framework could be used both to predict and estimate the properties of involved in
particular tasks.

There are several important implications of these results. First, the optimal filters and the
optimal pooling rules for decoding the latent variable, are all determined by the properties
of natural stimuli. If the training sets are representative of stimuli encountered in natural
viewing, then the computations reported here should be optimal for the tasks of speed and
disparity estimation. Second, at the right level of abstraction, the optimal solutions to these
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two different tasks share deep similarities, thereby raising the possibility that the same
normative computational framework will apply to all energy-model related tasks.

Response distributions: Gaussian vs. Heavy-tailed

The results reported here may appear to conflict with the widely reported finding that
receptive field responses to natural images are highly non-Gaussian, with heavy tails sharp
peaks at zero [18, 38, 10]). There are two explanations for this apparent discrepancy.
First, previous analyses generally have not incorporated contrast normalization. Second,
previous analyses are generally unsupervised and therefore do not condition on relevant latent
variables (e.g. motion) [10]. Note that even when contrast normalization is incorporated
and the class-conditional responses are Gaussian, the filter responses, marginalized over
the latent variable, tend to be heavy-tailed because the marginals are mixtures of Gaussians
P(Rt) =

∑
uP(Rt|Xu)P(Xu) with different variances (see black curves in Fig. 5E,F and

Fig. 6E,F). Therefore, our results are more similar to previous results than it may appear
at first glance [43]. In general, heavy-tailed response distributions are yielded by response
models that do not incorporate biologically plausible contrast normalization and response
analyses that do not include latent variable conditionalization [51, 29]. Incorporating
response normalization and latent variable conditionalization, as we have here, may help
reveal statistical properties of receptive field responses to complex natural stimuli that has
not yet been fully appreciated.

Likelihood Functions:Data-Constrained vs Assumed

Evolution selects organisms because they perform certain critical sensory, perceptual, and
behavioral tasks better than their evolutionary competitors. Certain features of sensory
stimuli are more useful for some tasks than others. The stimulus features that are most
useful to encode thus depend on the task-relevant latent variables that will be decoded from
the stimuli. However, many models of neural encoding do not explicitly consider the tasks
for which the encoded information will be decoded [38, 47] and many task-specific models
of neural decoding do not explicitly consider how sensory stimuli and neural encoders
constrain the information available for decoding [17, 30].

The approach advanced here is an early attempt to address both issues simultaneously.
By performing task-specific analyses using thousands of individual natural stimuli, learning
the optimal filters, and characterizing the class-conditional responses to natural stimuli, we
determined the likelihood functions that optimize performance in natural viewing. The
likelihood functions that result from the filter response distributions are (on average) log-
Gaussian in speed and disparity, with widths that increase with the value of the latent
variable. In previous work with natural stimuli, we showed that the optimal receptive fields,
response distributions, and resulting likelihood functions are robust to significant variation
in the shape of the prior, cost function, and noise power [8]. It is reasonable to conclude that
the task and the constraints imposed by natural stimuli are the most important determinants
of the width and shape of the likelihood functions.
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Some prominent theories of neural processing operate on the assumption that likelihood
functions can take on arbitrary widths and shapes via flexible allocation of neural resources
[19, 22, 46, 52]. Some reports have gone further to suggest that, in the context of Bayesian
efficient coding, the prior probability distribution over the latent variable is the primary factor
determining the widths and shapes of the likelihood functions [19, 52]. These reports predict
that if the prior probability distribution is flat, the likelihood functions will be symmetric
and have widths that remain constant with changes in the value of the latent variable. These
reports also predict that if the prior probability distribution is non-uniform (e.g. peaked at
zero), the likelihood functions will be asymmetric with widths that change systematically
with the latent variable.

In the tasks that we examined, we found that asymmetric likelihood functions optimize
performance despite the fact that the training sets from which the optimal filters were learned
had flat priors over the latent variable (see Results; [6, 7, 8]). These results appear at odds
with the predictions of previous reports. However, these previous reports do not model
the impact of natural stimulus variation. The implicit assumption is that task-irrelevant
(’nuissance’) stimulus variation can be ignored [19, 52]. If the goal is to understand optimal
task-specific processing of natural signals, our results indicate that such variation cannot be
ignored, Indeed, task-relevant and irreducible task-irrelevant natural stimulus variability are
almost certainly the most important determinants of likelihood function shapes and widths.

In natural viewing, visual estimates are driven primarily by stimulus measurements
(likelihood functions), not by prior distributions. If estimates were driven only by the prior,
observers could not respond to spatial or temporal changes in the environment. A full
account of task-specific perceptual processing and its underlying neurophysiology must
therefore incorporate natural stimulus variability. Future studies on the efficient allocation
of neural resources should verify that the likelihood functions used in modeling efforts can
be constructed by nervous systems given the constraints imposed by natural stimuli.

Natural vs. Artificial Stimuli

The problem of estimating speed and disparity from natural images is different from the
problem of estimating speed and disparity with artificial laboratory stimuli in at least one
important respect. Variability amongst natural stimuli having the same latent variable level
is typically greater than variability amongst artificial stimuli commonly used in vision
and visual neuroscience experiments. In motion experiments (Fig. 11.A), drifting Gabors
and random-dot kinematograms are common artificial stimuli. In disparity experiments,
phase-shifted binocular Gabors and random-dot stereograms are common artificial stimuli
(Fig. 11.B). The statistical properties of these artificial stimuli are notably different than
the statistical properties of natural stimuli. Gabors have Gaussian amplitude spectra and
random-dot stereograms have delta auto-correlation functions. Natural stimuli have a rich
variety of textures and shapes that cause significant variation in their 1/f amplitude spectra
and auto-correlation functions.

To examine the impact of artificial stimuli on the class-conditional responses, we created
artificial stimulus sets comprised of contrast-fixed, phase-randomized Gabors drifting at
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Figure 11: Natural stimuli, artificial stimuli, and class-conditional responses. Many different
retinal images are consistent with a given value of the task-relevant latent variable. These
differences cause within-class (task-irrelevant) stimulus variation. Within-class stimulus
variation is greater for natural stimuli than for typical artificial stimuli used in laboratory
experiments. A Stimuli for speed estimation experiments. Two different example stimuli
are shown for each stimulus type: natural stimuli (represented by a cartoon line-drawings),
Gabor stimuli, and random-dot stimuli. Both example stimuli for each stimulus type drift
at exactly the same speed, but create different retinal images. Natural stimuli cause more
within-class retinal stimulus variation than artificial stimuli. B Same as A, but for disparity.
C Speed task: class-conditional responses to contrast-fixed 1.0 cpd drifting Gabors with
random phase (speed task). Colors indicate different speeds. Ellipses represent filter
responses to natural stimuli having the same speeds. D Disparity task: Class-conditional
responses to contrast-fixed 1.5 cpd binocular Gabors with random phase. Class-conditional
responses no longer have Gaussian structure, and instead have ring structure.

different speeds and having different amounts of disparity. For each task, the spatial
frequency of the carrier was closely matched to the preferred spatial frequency of the first
two optimal filters (1.0 cpd for speed, 1.5 cpd for disparity). Joint filter responses to these
artificial stimuli are shown in Fig. 11.C,D; they are notably different than the filter responses
to natural stimuli. Although the class-conditional responses to Gabors are approximately
aligned with the major axis of the Gaussian characterizing responses to corresponding
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natural stimuli, the responses themselves are no longer Gaussian distributed, exhibiting
ring-shaped structure instead. Thus, determining the optimal rules for processing natural
stimuli by analyzing only artificial stimuli is likely to be a difficult enterprise.

These results suggest another conclusion that may be somewhat counterintuitive given
the history of the field. The tradition in vision science has been to eliminate irrelevant
stimulus variation from experimental protocols by using simple artificial stimuli. These
stimuli are easy to characterize mathematically and manipulate parametrically. But artificial
stimuli lack the richness and variability that visual systems evolved to process. Analyzing
complex, variable natural stimuli may reveal simple (e.g. Gaussian) statistical structure
that might otherwise be missed. We believe that the results presented here highlight the
importance of conducting rigorous, well-controlled, task-focused computational and behav-
ioral investigations with natural stimuli. These investigations complement classic studies
with artificial stimuli, and provide a fuller picture of how visual systems function in natural
circumstances.

Limitations and Future Directions

The results presented here represent the first in what we hope is a series of steps to link
normative models for natural tasks and descriptive models of neural response. However,
while we believe that developing AMA-Gauss and demonstrating its links to methods for
neural systems identification are useful advances, several limitations should be kept in mind.
Here, we address the drawbacks of the natural stimulus sets, the general applicability of
AMA-Gauss, and the importance of the links that we have drawn to descriptive models of
neural response.

The natural image sets used in this manuscript had natural contrast distributions and
photographic textures, but they lacked natural depth structure. All motion signals were rigid
and all disparity signals were planar. Future work will examine the impact of non-rigid
motion (e.g. looming) and local depth variation (e.g. occlusion) on performance. We
have recently collected a dataset of stereo-images that addresses this limitation [9]. Each
stereo-image has co-registered distance data from which groundtruth disparity patterns can
be computed. Pilot analyses suggest that the results presented in the current manuscript will
hold for natural stereo-images with local depth variation. We suspect, but we are not yet
well-positioned to show, that the same will be true of motion signals having natural depth
variation.

AMA-Gauss is the appropriate normative framework for understanding energy-model-
related tasks, but the general usefulness of AMA-Gauss is unknown. AMA-Gauss makes
the best possible use of the first- and second-order filter response statistics, but it is blind
to higher-order response statistics that exist in natural motion [32] and natural disparity
signals. To increase generality, one could develop a variant of the method that incorporates
rectification into the response model. This modification would confer the ability, at least
in principle, to pick up on potentially useful higher-order motion and disparity cues, and
provide a normative model that complements other methods for neural systems identification
[31].
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5. Conclusion
In this paper, we develop AMA-Gauss, a new form of AMA that incorporates the assumption
that the class-conditional filter responses are Gaussian distributed. We use AMA-Gauss to
establish links between task-specific normative models of speed and disparity estimation and
the motion- and disparity-energy models, two popular descriptive models of neurons that
are selective for those quantities. Our results suggest that energy-model-like (i.e. quadratic)
computations are optimal for these tasks in natural scenes. We also establish the formal
similarities between AMA-Gauss and the Generalized Quadratic Model (GQM), a recently
developed model for neural systems identification. The developments presented here forge
links between normative task-specific modeling and powerful statistical tools for describing
neural response, and demonstrate the importance of analyzing natural signals in perception
and neuroscience research.
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Appendix

Appendix A. Gradient of the Likelihood Function
In any given training set having N stimuli, each stimulus is associated with some category
k and an associated stimulus from that category l. Let us denote this pair (k, l) for the ith

sample point with (ki, li). Then assuming that the response distribution conditioned on the
classes is Gaussian, the likelihood function can be written as

L(f) =
N∏
i=1

(
2π
)− d

2 |Σki|−
1
2 exp

[
− 1

2

(
R(ki, li)− µki

)T
Σ−1
ki

(
R(ki, li)− µki

)]
Substituting the expression for the noisy responses (Eq. (5)) and defining l(f) = logL(f)
yields the log-likelihood function of the AMA-Gauss filters

l(f) = ζu−
1

2

N∑
i=1

log |fTBkif+Λ|+
(
fT skili−fT ski +η

)T (fTBkif+Λ
)−1(fT skili−fT ski +η

)
where ski = 1

Nki

∑Nki
mi=1 skimi

andBki = 1
Nki

∑Nki
mi=1(ski,mi

−ski)(ski,mi
−ski)T are the class-

conditional stimulus mean and covariance matrix, respectively, and ζu = −1
2

log |2πΣu| is
a constant.

Rearranging to segregate terms that do not depend on noise samples

l(f) = ζu −
1

2

N∑
i=1

[
log |fTBkif + Λ|+

(
skili − ski

)T f
(
fTBkif + Λ

)−1fT
(
skili − ski

)
+

ηT
(
fTBkif+Λ

)−1fT
(
skili−ski

)
+
(
skili−ski

)T f
(
fTBkif+Λ

)−1
η+ηT

(
fTBkif+Λ

)−1
η
]

(29)

where fTBf + Λ is a symmetric matrix. Recognizing that each term in Eq 29 is a scalar, and
rewriting using the properties that Tr

(
a) = a, Tr(AB) = Tr(BA) and Tr(A) = Tr(AT )

yields

l(f) = ζu−
1

2

N∑
i=1

[
log |fTBkif+Λ|+Tr

((
fTBkif+Λ

)−1fT
(
skili− ski

)(
skili− ski

)T f
)

+

2Tr
((

skili − ski
)T f
(
fTBkif + Λ

)−1
η
)

+ Tr
((

fTBkif + Λ
)−1

ηηT
)]

(30)

To determine the gradient of the log-likelihood∇fl(f), we derive the gradient of each term
in Eq. 30 separately below. Before doing so, we state some standard matrix results that will
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be used in the derivation [42].

∂ log(det(X))

∂X
= (XT )−1 (31)

∂

∂X
Tr((A+ XTCX)−1XTBX) = −2CX(A+ XTCX)−1XTBX(A+ XTCX)−1

+ 2BX(A+ XTCX)−1 (32)
∂

∂X
Tr(XTCX)−1A = −CX(XTCX)−1(A + AT )(XTCX)−1 (33)

The gradient of the first term in Eq 30 is obtained by using Eq 31 and the chain rule of
differentiation

∇f log |
Y︷ ︸︸ ︷

fTBkif + Λ | = ∂ log |Y|
∂Y

∂(

Y︷ ︸︸ ︷
fTBkif + Λ)

∂f
∇f log |fTBkif + Λ| = 2Bkif

(
fBkif

T + Λ
)−1 (34)

The gradient of the second term in Eq 30 is obtained using Eq 32

∇fTr
((

fTBkif+Λ
)−1fT

(
skili−ski

)(
skili−ski

)T f
)

= 2
(
skili−ski

)(
skili−ski

)T
f
(
fTBkif+Λ

)−1

− 2Bkif
(
fTBkif + Λ

)−1fT
(
skili − ski

)(
skili − ski

)T
f
(
fTBkif + Λ

)−1 (35)

The gradient of the third term is obtained using Eq 33 and the chain rule of differentiation

∇f2Tr
((

skili − ski
)T f
(
fTBkif + Λ

)−1
η
)

= 2
(
skili − ski

)
ηT
(
fTBkif + Λ

)−1
+

2Bkif
(
fTBkif + Λ

)−1
(
η
(
skili − ski

)T f + fT
(
skili − ski

)
ηT
)(

fTBkif + Λ
)−1 (36)

The gradient of the fourth term is similarly obtained using Eq 33

∇fTr
((

fTBkif + Λ
)−1

ηηT
)

= −4Bkif
(
fTBkif + Λ

)−1
(
ηηT

)(
fTBkif + Λ

)−1 (37)

The full gradient of the AMA-Gauss filter log-likelihood l(f) stated in Eq 30 can therefore
be found by combining Eqs 34-37.

The gradient of the expected log-likelihood follows directly from the gradient of the
log-likelihood. The response noise η ∼ N

(
0,Λ

)
is normally distributed (Eq 6); therefore,

Eη
[
ηT
(
fTBkif

)−1
η
]

= Tr(
(
fTBkif

)−1
Λ). Substituting into Eq 30 yields the expected

log-likelihood of the AMA-Gauss filters

Eη

[
l(f)
]

= ζu −
1

2

N∑
i=1

[
log |fTBkif + Λ|−

(
skili − ski

)T
f
(
fTBkif + Λ

)−1fT
(
skili − ski

)
− Tr(

(
fTBkif + Λ

)−1
Λ)
]

(38)
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The gradient of the expected log-likelihood, using Eqs 34,35, and 37, is given by

∇fEη
[
l(f)
]

= −
N∑
i=1

[
Bkif

(
fBkif

T + Λ
)−1−

Bkif
(
fTBkif + Λ

)−1fT
(
skili − ski

)(
skili − ski

)T
f
(
fTBkif + Λ

)−1
+(

skili − ski
)(

skili − ski
)T

f
(
fTBkif + Λ

)−1−
1

2
Bkif(fTBkif + Λ)−1(Λ + ΛT )(fTBkif + Λ)−1)

]
(39)

Appendix B. Gradient of L2 cost function
The average expected cost across all the stimuli is

C̄ =
1

N

∑
k,l

C̄kl (40)

Given the squared error loss function, the expected cost per stimuli can be written as

C̄kl = ER(k,l)

[(
X̂opt
kl −Xk

)2] (41)

where X̂opt
kl =

∑Nlvl

u=1 XuP
(
Xu|R(k, l)

)
since the optimal estimate for a squared error

function is the mean of the posterior, i.e. E
[
Xu|R(k, l)

]
. Using the approximation that the

expected cost of each stimulus is equal to the cost given the expected response [21] yields

C̄kl ∼=
( Nlvl∑
u=1

XuP
(
Xu|r(k, l)

)
−Xk

)2

(42)

Therefore, to evaluate the gradient of the total cost we just need to evaluate the expression
for the gradient of the expected cost of each stimulus. Hence,

∇fqC̄kl = ∇fq
(
X̂opt
kl −Xk

)2

= 2
(
X̂opt
kl −Xk

)
∇fqX̂

opt
kl (43)

The gradient of the optimal estimate given the mean response is

∇fqX̂
opt
kl =

Nlvl∑
u=1

Xu

[
∇fqP

(
Xu|r(k, l)

)]
(44)

Hence, the problem reduces to finding
[
∇fqP

(
Xu|r(k, l)

)]
P(Xu|r(k, l)) =

N
(
r(k, l);µu,Σu

)∑Nlvl

i=1 N
(
r(k, l);µi,Σi

) (45)
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Making substitutions in Eq (45) gives

P(Xu|r(k, l)) =
|Σu|−0.5exp

[
−0.5

(
r(k, l)− µu

)T
Σ−1
u

(
r(k, l)− µu

)]
∑Nlvl

i=1 |Σi|−0.5exp
[
−0.5

(
r(k, l)− µi

)T
Σ−1
i

(
r(k, l)− µi

)] (46)

=
|fTBuf + Λ|−0.5exp

[
−0.5A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u

]
∑Nlvl

i=1 |f
TBif + Λ|−0.5exp

[
−0.5AT

kl,if
(
fTBif + Λ

)−1fT Akl,i

] (47)

where Akl,u = skl− su. The gradient of the posterior probability can then be evaluated using
the following relation with the gradient of the logarithm of the posterior probability

∇fqP(Xu|r(k, l)) = P(Xu|r(k, l))
[
∇fq logP(Xu|r(k, l))

]
(48)

Taking the natural logarithm of the posterior yields

logP
(
Xu|r(k, l)

)
= − log

Nlvl∑
i=1

|fTBuf + Λ|0.5

|fTBif + Λ|0.5

exp
(1

2

(
A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

))
(49)

Next, we define new variables to simplify this expression for the log posterior probability
and the subsequent derivation of its gradient. Let each term in the summation in Eq (49) be

Zi(u, k, l, f) = Ti(u, k, l, f)exp
(1

2
Ui(u, k, l, f)

)
(50)

where Ti(u, k, l, f) = |fTBuf+Λ|0.5
|fTBif+Λ|0.5 is the scale factor in each term in the summation in Eq

(50) and
where Ui(u, k, l, f) = A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i is the
exponentiated term in each term of the sum in Eq (50). Hence, by substituting Eq. (50) into
Eq (49) the simplified expression for the log posterior is

logP(Xu|r(k, l)) = − log

Nlvl∑
i=1

Zi(u, k, l, f) (51)

The gradient of the log posterior probability can therefore be expressed as

∇f logP(Xu|r(k, l)) = ∇f

(
− log

Nlvl∑
i=1

Zi(u, k, l, f)
)

(52)

The gradient of the log is

∇f logP(Xu|r(k, l)) =

∑Nlvl

i=1 ∇fZi
(
u, k, l, f

)∑Nlvl

i=1 Zi(u, k, l, f)
(53)
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Expanding the numerator by substituting Eq (50) using the chain rule for differentiation

∇f logP(Xu|r(k, l)) = − 1∑Nlvl

v=1 Zv(u, k, l, f)

Nlvl∑
i=1

(
exp
(1

2
Ui(u, k, l, f)

)
∇fTi(u, k, l, f)+

1

2
Ti(u, k, l, f)exp

(1

2
Ui(u, k, l, f)

)
∇fUi(u, k, l, f)

)
(54)

The remaining terms to be evaluated are ∇fTi(u, k, l, f) and ∇fUi(u, k, l, f).
The expression for ∇fTi(u, k, l, f) is

∇fTi(u, k, l, f) = ∇f
|fTBuf + Λ|0.5

|fTBif + Λ|0.5

=
|fTBuf + Λ|0.5|fTBif + Λ|0.5

(
(fTBuf + Λ)−1Buf− (fTBif + Λ)−1Bif

)
|fTBif + Λ|

=
|fTBuf + Λ|0.5

|fTBif + Λ|0.5
(
Buf(fTBuf + Λ)−1 −Bif(fTBif + Λ)−1

)
(55)

The expression for ∇fUi(u, k, l, f) is

Ui(u, k, l, f) = Tr
(

A
T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

)
= Tr

(
A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u

)
− Tr

(
A

T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

)
= Tr

(
(fTBuf + Λ)−1fTAkl,uAT

kl,uf
)
− Tr

(
(fTBif + Λ)−1fTAkl,iAT

kl,if
)

= Tr
(

(fTBuf + Λ)−1fTDkl,uf
)
− Tr

(
fTBif + Λ)−1fTDkl,if

)
∇fUi(u, k, l, f) = ∇fTr

(
(fTBuf + Λ)−1fTDkl,uf

)
−∇fTr

(
(fTBif + Λ)−1fTDkl,if

)
(56)

where Dkl,u = Akl,uAT
kl,u. The expression for the gradient of the trace in Eq (56) is obtained

by using Eqs (32). Thus,

∇fTr((fTBuf + Λ)−1fTDkl,uf) = −2Buf(fTBuf + Λ)−1fTDkl,uf(fTBuf + Λ)−1+

2Dkl,uf(fTBuf + Λ)−1 (57)

The gradient ∇fUi(u, k, l, f) is obtained by substituting Eq (57) into Eq (56). The
gradient of logP(Xu|r(k, l)) is obtained by substituting Eq (55) and Eq (56) into Eq (54).
The gradient of the posterior probability is obtained by plugging Eq (54) into Eq (48). The
gradient of the cost for each stimulus is obtained by plugging Eq (48) into Eq (44), and then
plugging that result into Eq (43)
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Appendix C. AMA-Gauss Gradient with L0 / KL-divergence cost
function

The total cost for a set of filters is given by the average expected cost across all stimuli

C̄ =
1

N

N∑
k,l

ER(k,l)[Ckl] (58)

Given the 0,1 cost function, the cost associated with the filter response to an arbitrary
stimulus is given by Ckl = 1− P

(
Xk|R(k, l)

)
. This cost is monotonic with KL-divergence

and we refer to this cost as the KL-cost.

Ckl = − logP(Xk|R(k, l)) (59)

We approximate the expected cost associated with each stimulus with the expected cost
given the mean response [21]. Thus, we have

ER(k,l)[Ckl] = −
∫ ∞
−∞

logP
(
Xk|R(k, l)

)
P
(
R(k, l)|skl

)
dR(k, l) (60)

∼= − logP
(
Xk|r(k, l)

)
(61)

Therefore, the total cost for a set of filters is given by

C̄ = − 1

N

N∑
k,l

logP
(
Xk|r(k, l)

)
(62)

Hence, the gradient of the total expected cost C̄ can then be written as

∇fC̄ =
1

N

N∑
k,l

∇fq

[
logP

(
Xk|r(k, l)

)]
(63)

The full expression for the expected cost C̄ is obtained by substituting the expression for
∇fq

[
logP

(
Xk|r(k, l)

)]
given by Eq (54), Eq (55), and Eq (56) in Appendix (B).

Appendix D. Connection between AMA-Gauss and GQM
The log-likelihood of latent variable Xu using Eq (28) can be written as

l
(
Xu

)
= −1

2

(
xT fΣ−1

u fTx− 2(µT
uΣ−1

u − ηTuΣ−1
u )fTx + µT

uΣ−1
u µu−

ηTuΣ−1
u ηu + 2ηTkΣ−1

u µu

)
+ ζu (64)
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where ζu = −1
2

log |2πΣu| is a constant. The expected log-likelihood can then be written as

Eη

[
l
(
Xu

)]
= −1

2

(
xT fΣ−1

u fTx− 2µT
uΣ−1

u fTx + µT
uΣ−1

u µu − Tr
(
Σ−1
u Λ

))
+ ζu (65)

It is evident from Eq (65) that Eη

[
l
(
Xu

)]
is of the form xTCx + bTx + a where

C = −1

2
fΣ−1

u fT (66)

bT = µT
uΣ−1

u fT (67)

and a = −1

2
µT
uΣ−1

u µu +
1

2
Tr
(
Σ−1
u Λ

)
+ ζu (68)
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