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Figure 11: Natural stimuli, artificial stimuli, and class-conditional responses. Many different
retinal images are consistent with a given value of the task-relevant latent variable. These
differences cause within-class (task-irrelevant) stimulus variation. Within-class stimulus
variation is greater for natural stimuli than for typical artificial stimuli used in laboratory
experiments. A Stimuli for speed estimation experiments. Two different example stimuli
are shown for each stimulus type: natural stimuli (represented by a cartoon line-drawings),
Gabor stimuli, and random-dot stimuli. Both example stimuli for each stimulus type drift
at exactly the same speed, but create different retinal images. Natural stimuli cause more
within-class retinal stimulus variation than artificial stimuli. B Same as A, but for disparity.
C Speed task: class-conditional responses to contrast-fixed 1.0 cpd drifting Gabors with
random phase (speed task). Colors indicate different speeds. Ellipses represent filter
responses to natural stimuli having the same speeds. D Disparity task: Class-conditional
responses to contrast-fixed 1.5 cpd binocular Gabors with random phase. Class-conditional
responses no longer have Gaussian structure, and instead have ring structure.

different speeds and having different amounts of disparity. For each task, the spatial
frequency of the carrier was closely matched to the preferred spatial frequency of the first
two optimal filters (1.0 cpd for speed, 1.5 cpd for disparity). Joint filter responses to these
artificial stimuli are shown in Fig. 11.C,D; they are notably different than the filter responses
to natural stimuli. Although the class-conditional responses to Gabors are approximately
aligned with the major axis of the Gaussian characterizing responses to corresponding
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natural stimuli, the responses themselves are no longer Gaussian distributed, exhibiting
ring-shaped structure instead. Thus, determining the optimal rules for processing natural
stimuli by analyzing only artificial stimuli is likely to be a difficult enterprise.

These results suggest another conclusion that may be somewhat counterintuitive given
the history of the field. The tradition in vision science has been to eliminate irrelevant
stimulus variation from experimental protocols by using simple artificial stimuli. These
stimuli are easy to characterize mathematically and manipulate parametrically. But artificial
stimuli lack the richness and variability that visual systems evolved to process. Analyzing
complex, variable natural stimuli may reveal simple (e.g. Gaussian) statistical structure
that might otherwise be missed. We believe that the results presented here highlight the
importance of conducting rigorous, well-controlled, task-focused computational and behav-
ioral investigations with natural stimuli. These investigations complement classic studies
with artificial stimuli, and provide a fuller picture of how visual systems function in natural
circumstances.

Limitations and Future Directions

The results presented here represent the first in what we hope is a series of steps to link
normative models for natural tasks and descriptive models of neural response. However,
while we believe that developing AMA-Gauss and demonstrating its links to methods for
neural systems identification are useful advances, several limitations should be kept in mind.
Here, we address the drawbacks of the natural stimulus sets, the general applicability of
AMA-Gauss, and the importance of the links that we have drawn to descriptive models of
neural response.

The natural image sets used in this manuscript had natural contrast distributions and
photographic textures, but they lacked natural depth structure. All motion signals were rigid
and all disparity signals were planar. Future work will examine the impact of non-rigid
motion (e.g. looming) and local depth variation (e.g. occlusion) on performance. We
have recently collected a dataset of stereo-images that addresses this limitation [9]. Each
stereo-image has co-registered distance data from which groundtruth disparity patterns can
be computed. Pilot analyses suggest that the results presented in the current manuscript will
hold for natural stereo-images with local depth variation. We suspect, but we are not yet
well-positioned to show, that the same will be true of motion signals having natural depth
variation.

AMA-Gauss is the appropriate normative framework for understanding energy-model-
related tasks, but the general usefulness of AMA-Gauss is unknown. AMA-Gauss makes
the best possible use of the first- and second-order filter response statistics, but it is blind
to higher-order response statistics that exist in natural motion [32] and natural disparity
signals. To increase generality, one could develop a variant of the method that incorporates
rectification into the response model. This modification would confer the ability, at least
in principle, to pick up on potentially useful higher-order motion and disparity cues, and
provide a normative model that complements other methods for neural systems identification
[31].
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5. Conclusion
In this paper, we develop AMA-Gauss, a new form of AMA that incorporates the assumption
that the class-conditional filter responses are Gaussian distributed. We use AMA-Gauss to
establish links between task-specific normative models of speed and disparity estimation and
the motion- and disparity-energy models, two popular descriptive models of neurons that
are selective for those quantities. Our results suggest that energy-model-like (i.e. quadratic)
computations are optimal for these tasks in natural scenes. We also establish the formal
similarities between AMA-Gauss and the Generalized Quadratic Model (GQM), a recently
developed model for neural systems identification. The developments presented here forge
links between normative task-specific modeling and powerful statistical tools for describing
neural response, and demonstrate the importance of analyzing natural signals in perception
and neuroscience research.
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Appendix

Appendix A. Gradient of the Likelihood Function
In any given training set having N stimuli, each stimulus is associated with some category
k and an associated stimulus from that category l. Let us denote this pair (k, l) for the ith

sample point with (ki, li). Then assuming that the response distribution conditioned on the
classes is Gaussian, the likelihood function can be written as

L(f) =
N∏
i=1

(
2π
)− d

2 |Σki|−
1
2 exp

[
− 1

2

(
R(ki, li)− µki

)T
Σ−1
ki

(
R(ki, li)− µki

)]
Substituting the expression for the noisy responses (Eq. (5)) and defining l(f) = logL(f)
yields the log-likelihood function of the AMA-Gauss filters

l(f) = ζu−
1

2

N∑
i=1

log |fTBkif+Λ|+
(
fT skili−fT ski +η

)T (fTBkif+Λ
)−1(fT skili−fT ski +η

)
where ski = 1

Nki

∑Nki
mi=1 skimi

andBki = 1
Nki

∑Nki
mi=1(ski,mi

−ski)(ski,mi
−ski)T are the class-

conditional stimulus mean and covariance matrix, respectively, and ζu = −1
2

log |2πΣu| is
a constant.

Rearranging to segregate terms that do not depend on noise samples

l(f) = ζu −
1

2

N∑
i=1

[
log |fTBkif + Λ|+

(
skili − ski

)T f
(
fTBkif + Λ

)−1fT
(
skili − ski

)
+

ηT
(
fTBkif+Λ

)−1fT
(
skili−ski

)
+
(
skili−ski

)T f
(
fTBkif+Λ

)−1
η+ηT

(
fTBkif+Λ

)−1
η
]

(29)

where fTBf + Λ is a symmetric matrix. Recognizing that each term in Eq 29 is a scalar, and
rewriting using the properties that Tr

(
a) = a, Tr(AB) = Tr(BA) and Tr(A) = Tr(AT )

yields

l(f) = ζu−
1

2

N∑
i=1

[
log |fTBkif+Λ|+Tr

((
fTBkif+Λ

)−1fT
(
skili− ski

)(
skili− ski

)T f
)

+

2Tr
((

skili − ski
)T f
(
fTBkif + Λ

)−1
η
)

+ Tr
((

fTBkif + Λ
)−1

ηηT
)]

(30)

To determine the gradient of the log-likelihood∇fl(f), we derive the gradient of each term
in Eq. 30 separately below. Before doing so, we state some standard matrix results that will
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be used in the derivation [42].

∂ log(det(X))

∂X
= (XT )−1 (31)

∂

∂X
Tr((A+ XTCX)−1XTBX) = −2CX(A+ XTCX)−1XTBX(A+ XTCX)−1

+ 2BX(A+ XTCX)−1 (32)
∂

∂X
Tr(XTCX)−1A = −CX(XTCX)−1(A + AT )(XTCX)−1 (33)

The gradient of the first term in Eq 30 is obtained by using Eq 31 and the chain rule of
differentiation

∇f log |
Y︷ ︸︸ ︷

fTBkif + Λ | = ∂ log |Y|
∂Y

∂(

Y︷ ︸︸ ︷
fTBkif + Λ)

∂f
∇f log |fTBkif + Λ| = 2Bkif

(
fBkif

T + Λ
)−1 (34)

The gradient of the second term in Eq 30 is obtained using Eq 32

∇fTr
((

fTBkif+Λ
)−1fT

(
skili−ski

)(
skili−ski

)T f
)

= 2
(
skili−ski

)(
skili−ski

)T
f
(
fTBkif+Λ

)−1

− 2Bkif
(
fTBkif + Λ

)−1fT
(
skili − ski

)(
skili − ski

)T
f
(
fTBkif + Λ

)−1 (35)

The gradient of the third term is obtained using Eq 33 and the chain rule of differentiation

∇f2Tr
((

skili − ski
)T f
(
fTBkif + Λ

)−1
η
)

= 2
(
skili − ski

)
ηT
(
fTBkif + Λ

)−1
+

2Bkif
(
fTBkif + Λ

)−1
(
η
(
skili − ski

)T f + fT
(
skili − ski

)
ηT
)(

fTBkif + Λ
)−1 (36)

The gradient of the fourth term is similarly obtained using Eq 33

∇fTr
((

fTBkif + Λ
)−1

ηηT
)

= −4Bkif
(
fTBkif + Λ

)−1
(
ηηT

)(
fTBkif + Λ

)−1 (37)

The full gradient of the AMA-Gauss filter log-likelihood l(f) stated in Eq 30 can therefore
be found by combining Eqs 34-37.

The gradient of the expected log-likelihood follows directly from the gradient of the
log-likelihood. The response noise η ∼ N

(
0,Λ

)
is normally distributed (Eq 6); therefore,

Eη
[
ηT
(
fTBkif

)−1
η
]

= Tr(
(
fTBkif

)−1
Λ). Substituting into Eq 30 yields the expected

log-likelihood of the AMA-Gauss filters

Eη

[
l(f)
]

= ζu −
1

2

N∑
i=1

[
log |fTBkif + Λ|−

(
skili − ski

)T
f
(
fTBkif + Λ

)−1fT
(
skili − ski

)
− Tr(

(
fTBkif + Λ

)−1
Λ)
]

(38)
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The gradient of the expected log-likelihood, using Eqs 34,35, and 37, is given by

∇fEη
[
l(f)
]

= −
N∑
i=1

[
Bkif

(
fBkif

T + Λ
)−1−

Bkif
(
fTBkif + Λ

)−1fT
(
skili − ski

)(
skili − ski

)T
f
(
fTBkif + Λ

)−1
+(

skili − ski
)(

skili − ski
)T

f
(
fTBkif + Λ

)−1−
1

2
Bkif(fTBkif + Λ)−1(Λ + ΛT )(fTBkif + Λ)−1)

]
(39)

Appendix B. Gradient of L2 cost function
The average expected cost across all the stimuli is

C̄ =
1

N

∑
k,l

C̄kl (40)

Given the squared error loss function, the expected cost per stimuli can be written as

C̄kl = ER(k,l)

[(
X̂opt
kl −Xk

)2] (41)

where X̂opt
kl =

∑Nlvl

u=1 XuP
(
Xu|R(k, l)

)
since the optimal estimate for a squared error

function is the mean of the posterior, i.e. E
[
Xu|R(k, l)

]
. Using the approximation that the

expected cost of each stimulus is equal to the cost given the expected response [21] yields

C̄kl ∼=
( Nlvl∑
u=1

XuP
(
Xu|r(k, l)

)
−Xk

)2

(42)

Therefore, to evaluate the gradient of the total cost we just need to evaluate the expression
for the gradient of the expected cost of each stimulus. Hence,

∇fqC̄kl = ∇fq
(
X̂opt
kl −Xk

)2

= 2
(
X̂opt
kl −Xk

)
∇fqX̂

opt
kl (43)

The gradient of the optimal estimate given the mean response is

∇fqX̂
opt
kl =

Nlvl∑
u=1

Xu

[
∇fqP

(
Xu|r(k, l)

)]
(44)

Hence, the problem reduces to finding
[
∇fqP

(
Xu|r(k, l)

)]
P(Xu|r(k, l)) =

N
(
r(k, l);µu,Σu

)∑Nlvl

i=1 N
(
r(k, l);µi,Σi

) (45)
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Making substitutions in Eq (45) gives

P(Xu|r(k, l)) =
|Σu|−0.5exp

[
−0.5

(
r(k, l)− µu

)T
Σ−1
u

(
r(k, l)− µu

)]
∑Nlvl

i=1 |Σi|−0.5exp
[
−0.5

(
r(k, l)− µi

)T
Σ−1
i

(
r(k, l)− µi

)] (46)

=
|fTBuf + Λ|−0.5exp

[
−0.5A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u

]
∑Nlvl

i=1 |f
TBif + Λ|−0.5exp

[
−0.5AT

kl,if
(
fTBif + Λ

)−1fT Akl,i

] (47)

where Akl,u = skl− su. The gradient of the posterior probability can then be evaluated using
the following relation with the gradient of the logarithm of the posterior probability

∇fqP(Xu|r(k, l)) = P(Xu|r(k, l))
[
∇fq logP(Xu|r(k, l))

]
(48)

Taking the natural logarithm of the posterior yields

logP
(
Xu|r(k, l)

)
= − log

Nlvl∑
i=1

|fTBuf + Λ|0.5

|fTBif + Λ|0.5

exp
(1

2

(
A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

))
(49)

Next, we define new variables to simplify this expression for the log posterior probability
and the subsequent derivation of its gradient. Let each term in the summation in Eq (49) be

Zi(u, k, l, f) = Ti(u, k, l, f)exp
(1

2
Ui(u, k, l, f)

)
(50)

where Ti(u, k, l, f) = |fTBuf+Λ|0.5
|fTBif+Λ|0.5 is the scale factor in each term in the summation in Eq

(50) and
where Ui(u, k, l, f) = A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i is the
exponentiated term in each term of the sum in Eq (50). Hence, by substituting Eq. (50) into
Eq (49) the simplified expression for the log posterior is

logP(Xu|r(k, l)) = − log

Nlvl∑
i=1

Zi(u, k, l, f) (51)

The gradient of the log posterior probability can therefore be expressed as

∇f logP(Xu|r(k, l)) = ∇f

(
− log

Nlvl∑
i=1

Zi(u, k, l, f)
)

(52)

The gradient of the log is

∇f logP(Xu|r(k, l)) =

∑Nlvl

i=1 ∇fZi
(
u, k, l, f

)∑Nlvl

i=1 Zi(u, k, l, f)
(53)
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Expanding the numerator by substituting Eq (50) using the chain rule for differentiation

∇f logP(Xu|r(k, l)) = − 1∑Nlvl

v=1 Zv(u, k, l, f)

Nlvl∑
i=1

(
exp
(1

2
Ui(u, k, l, f)

)
∇fTi(u, k, l, f)+

1

2
Ti(u, k, l, f)exp

(1

2
Ui(u, k, l, f)

)
∇fUi(u, k, l, f)

)
(54)

The remaining terms to be evaluated are ∇fTi(u, k, l, f) and ∇fUi(u, k, l, f).
The expression for ∇fTi(u, k, l, f) is

∇fTi(u, k, l, f) = ∇f
|fTBuf + Λ|0.5

|fTBif + Λ|0.5

=
|fTBuf + Λ|0.5|fTBif + Λ|0.5

(
(fTBuf + Λ)−1Buf− (fTBif + Λ)−1Bif

)
|fTBif + Λ|

=
|fTBuf + Λ|0.5

|fTBif + Λ|0.5
(
Buf(fTBuf + Λ)−1 −Bif(fTBif + Λ)−1

)
(55)

The expression for ∇fUi(u, k, l, f) is

Ui(u, k, l, f) = Tr
(

A
T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u − A
T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

)
= Tr

(
A

T

kl,uf
(
fTBuf + Λ

)−1f
T

Akl,u

)
− Tr

(
A

T

kl,if
(
fTBif + Λ

)−1f
T

Akl,i

)
= Tr

(
(fTBuf + Λ)−1fTAkl,uAT

kl,uf
)
− Tr

(
(fTBif + Λ)−1fTAkl,iAT

kl,if
)

= Tr
(

(fTBuf + Λ)−1fTDkl,uf
)
− Tr

(
fTBif + Λ)−1fTDkl,if

)
∇fUi(u, k, l, f) = ∇fTr

(
(fTBuf + Λ)−1fTDkl,uf

)
−∇fTr

(
(fTBif + Λ)−1fTDkl,if

)
(56)

where Dkl,u = Akl,uAT
kl,u. The expression for the gradient of the trace in Eq (56) is obtained

by using Eqs (32). Thus,

∇fTr((fTBuf + Λ)−1fTDkl,uf) = −2Buf(fTBuf + Λ)−1fTDkl,uf(fTBuf + Λ)−1+

2Dkl,uf(fTBuf + Λ)−1 (57)

The gradient ∇fUi(u, k, l, f) is obtained by substituting Eq (57) into Eq (56). The
gradient of logP(Xu|r(k, l)) is obtained by substituting Eq (55) and Eq (56) into Eq (54).
The gradient of the posterior probability is obtained by plugging Eq (54) into Eq (48). The
gradient of the cost for each stimulus is obtained by plugging Eq (48) into Eq (44), and then
plugging that result into Eq (43)
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Appendix C. AMA-Gauss Gradient with L0 / KL-divergence cost
function

The total cost for a set of filters is given by the average expected cost across all stimuli

C̄ =
1

N

N∑
k,l

ER(k,l)[Ckl] (58)

Given the 0,1 cost function, the cost associated with the filter response to an arbitrary
stimulus is given by Ckl = 1− P

(
Xk|R(k, l)

)
. This cost is monotonic with KL-divergence

and we refer to this cost as the KL-cost.

Ckl = − logP(Xk|R(k, l)) (59)

We approximate the expected cost associated with each stimulus with the expected cost
given the mean response [21]. Thus, we have

ER(k,l)[Ckl] = −
∫ ∞
−∞

logP
(
Xk|R(k, l)

)
P
(
R(k, l)|skl

)
dR(k, l) (60)

∼= − logP
(
Xk|r(k, l)

)
(61)

Therefore, the total cost for a set of filters is given by

C̄ = − 1

N

N∑
k,l

logP
(
Xk|r(k, l)

)
(62)

Hence, the gradient of the total expected cost C̄ can then be written as

∇fC̄ =
1

N

N∑
k,l

∇fq

[
logP

(
Xk|r(k, l)

)]
(63)

The full expression for the expected cost C̄ is obtained by substituting the expression for
∇fq

[
logP

(
Xk|r(k, l)

)]
given by Eq (54), Eq (55), and Eq (56) in Appendix (B).

Appendix D. Connection between AMA-Gauss and GQM
The log-likelihood of latent variable Xu using Eq (28) can be written as

l
(
Xu

)
= −1

2

(
xT fΣ−1

u fTx− 2(µT
uΣ−1

u − ηTuΣ−1
u )fTx + µT

uΣ−1
u µu−

ηTuΣ−1
u ηu + 2ηTkΣ−1

u µu

)
+ ζu (64)
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where ζu = −1
2

log |2πΣu| is a constant. The expected log-likelihood can then be written as

Eη

[
l
(
Xu

)]
= −1

2

(
xT fΣ−1

u fTx− 2µT
uΣ−1

u fTx + µT
uΣ−1

u µu − Tr
(
Σ−1
u Λ

))
+ ζu (65)

It is evident from Eq (65) that Eη

[
l
(
Xu

)]
is of the form xTCx + bTx + a where

C = −1

2
fΣ−1

u fT (66)

bT = µT
uΣ−1

u fT (67)

and a = −1

2
µT
uΣ−1

u µu +
1

2
Tr
(
Σ−1
u Λ

)
+ ζu (68)
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