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Rapid reaching to a target is generally accurate but also contains random and systematic error. Random errors result from
noise in visual measurement, motor planning, and reach execution. Systematic error results from systematic changes in the
mapping between the visual estimate of target location and the motor command necessary to reach the target (e.g., new
spectacles, muscular fatigue). Humans maintain accurate reaching by recalibrating the visuomotor system, but no widely
accepted computational model of the process exists. Given certain boundary conditions, a statistically optimal solution is a
Kalman filter. We compared human to Kalman filter behavior to determine how humans take into account the statistical
properties of errors and the reliability with which those errors can be measured. For most conditions, human and Kalman
filter behavior was similar: Increasing measurement uncertainty caused similar decreases in recalibration rate; directionally
asymmetric uncertainty caused different rates in different directions; more variation in systematic error increased
recalibration rate. However, behavior differed in one respect: Inserting random error by perturbing feedback position
causes slower adaptation in Kalman filters but had no effect in humans. This difference may be due to how biological
systems remain responsive to changes in environmental statistics. We discuss the implications of this work.
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Introduction

Consider a reaching movement too fast for visual
feedback to adjust the movement in flight. Such open-loop
reaching requires an appropriate mapping between the
visual estimate of the target’s location and the motor output
required to arrive there. In everyday circumstances, the
relationship between perceived location and appropriate
motor command may change. Maintenance of an appro-
priate mapping therefore requires continual updating; the
updating is called visuomotor calibration.
Visuomotor calibration was first studied by Helmholtz

(von Helmholtz, 1867). He presented a visible target and
subjects reached to it, a task they accomplished without
difficulty. The visuomotor mapping was then altered with
a prism that shifted the apparent direction of the target
rightward. Initial reaches after the prism was introduced
were in the visually specified direction, missing the target
to the right. However, after only a few reaches, subjects
corrected and reached to the true location.
Recalibration is integral to the proper functioning of

perceptual and perceptual–motor systems. Its time course
varies greatly from one system to another. In an attempt to

understand how and why time course varies, we describe
an optimal adaptor, show how its calibration rate is
affected by various stimulus properties, and then compare
its pattern of rate changes to human performance.
We assume that the goal of calibration is to maximize

accuracy and hence that calibration involves error mini-
mization. Consider a target whose location relative to the
body is L. Reaching toward the target requires a visual
estimate of its location and a movement that will bring the
hand to that location. The accuracy of the reach can be
assessed by comparing the visual estimates of the target
location, L̂V, and the reach endpoint feedback, F̂V. If the
subject observes an error, Ê, it could be systematic due to
miscalibration (as when first wearing a prism), it could be
random (such as motor noise), or it could be both.
(Proprioception can also provide feedback (Sober &
Sabes, 2003, 2005; van Beers, Wolpert, & Haggard,
2002). However, the experimental setup and the task
instructions were designed to make proprioception rela-
tively unuseful. Subjects reached in a plane orthogonal to
the plane in which the visual feedback appeared, so the
locations of proprioceptive and visual feedback were very
different. Subjects were also instructed to minimize the
discrepancy between the visual feedback and visual target
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location. We therefore ignored proprioception in our
analysis. But it is nevertheless possible that such input
influenced behavior. The consequences of this possibility
are discussed in the Methods section.
When error is due only to miscalibration (non-zero mean),

the best strategy is straightforward: measure the error signal,
Ê = F̂V j L̂V, and adjust the visual location estimate and/or
the motor command to make the error zero on the next
trial:

X̂tþ1 ¼ X̂t þ Êt; ð1Þ

where Êt is the observed reach error for the current reach,
X̂t is the visuomotor mapping estimate on the current
reach, and X̂t+1 is the visuomotor mapping estimate that
will be used for the next reach.
If the system is calibrated and the error is due to random

noise (zero mean), a change of the mapping estimate
would introduce rather than eliminate miscalibration by
pulling the system moment by moment away from the
correct calibration state thereby increasing response
variance. Thus, the mapping estimate should not be
changed; the best strategy for minimizing error is to
average over all previous observations:

X̂tþ1 ¼
Pn
i¼0

Êtji

n
n Y V; ð2Þ

where n is the number of observations in the average. Of
course, averaging over many observations would make the
system slow to respond to abrupt changes in systematic
error. In sum, the optimal strategies for dealing with
systematic and random errors are quite different.
Everyday changes in sensorimotor mapping are prob-

ably best characterized by an accumulation of small
changes rather than by large step changes (Baddeley,
Ingram, & Miall, 2003; Kagerer, Contreras-Vidal, &
Stelmach, 1997), so a given reach error is generally due
to both systematic and random error (where random error
includes error in reach execution). Thus, neither of the
aforementioned strategies is optimal for the world we live
in. This creates a fundamental problem: To determine the
appropriate response to a given error, the nervous system
should respond differently depending on how much of a
reach error was due to systematic error and how much to
random error. The system cannot determine those relative
proportions from any single observation, so a calibration
method is required that balances the competing needs to
average out random error while remaining sensitive to
changes in systematic error.
We can construct an algorithm that uses the available

information optimally to solve this problem. By studying
the properties of this optimal adaptor, we can determine
how the system should react to different kinds of variation
in the observed error. We can then compare the behavior
of the optimal adaptor to human behavior. If the behaviors

are similar, this is evidence that humans use the available
information efficiently; if the behaviors are dissimilar, this
is evidence that humans use the available information
suboptimally or that the assumptions underlying the
‘optimal’ adaptor are inappropriate. Such comparisons
between optimal and observed behavior have proven useful
in many other domains of neuroscience (Crowell & Banks,
1996; Geisler, 1989; Najemnik & Geisler, 2005; Watson,
1987). The optimal adaptor specifies the adaptation rate
that will minimize reaching error given the statistics of
reaching errors and the precision with which they can be
measured. Changes in those properties therefore lead
directly to behavioral predictions for how the adaptation
rate should change. We can present the same conditions to
humans and thereby determine how well they take the
available information into account when adapting.
In the three scenarios described aboveVerror due to

miscalibration, to random error, or to bothVthe properties
of the environment determine the optimal adaptation rate.
Nearly all previous models of motor (Bhushan &
Shadmehr, 1999; Donchin, Francis, & Shadmehr, 2003;
Shadmehr & Mussa-Ivaldi, 1994) and visuomotor recali-
bration (Cheng & Sabes, 2006; Diedrichsen, Hashambhoy,
Rane, & Shadmehr, 2005) do not take environmental
properties as input but rather attempt to identify the
control parameters that allow a good fit to the data.
An optimal solution is provided by the Kalman filter, an

algorithm widely used in engineering for the purpose of
estimating dynamic systems (Baddeley et al., 2003;
Ghahramani, Wolpert, & Jordan, 1997; Korenberg &
Ghahramani, 2002; Maybeck, 1979). A Kalman filter is
optimal if the system it is trying to estimate is linear, has
stationary statistics, has Gaussian-distributed noise, and its
errors are penalized by a least squares cost function; these
assumptions have been made previously and are not
unreasonable over short time periods. By combining noisy
measurements over time with prior information, the Kalman
filter maximizes the accuracy and precision of its estimates.
The position of a satellite orbiting the earth, for example, can
be estimated most accurately if position measurements,
made uncertain by atmospheric distortions and sensor noise,
are combined with the information that satellites travel in
mostly elliptical paths. The optimal combination of measure-
ment and prior information can be similarly applied to
visuomotor behavior (Körding & Wolpert, 2004) and calibra-
tion (Ghahramani et al., 1997; Korenberg & Ghahramani,
2002). As the visuomotor mapping changes in time, the
visuomotor system can maximize the accuracy of its mapping
estimates by combining measurements of reaching error,
made uncertain by visual blur, with knowledge based on prior
experience of how stable the mapping generally is.
For a visuomotor mapping, Xt, changing in time, the Kalman

filter continuously updates the estimate of the mapping by a
weighted combination of the most recent observed error and
the current mapping estimate based on previous estimates:

X̂tþ1 ¼ X̂t þ KðÊtÞ; ð3Þ
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where K is the proportion of the observed error by which
the mapping estimate will be adjusted (the Kalman gain).
By using multiple observations, weighted by recency, to
estimate the mapping error, the impact of random error is
reduced. In this way, the system retains the ability to
respond to changes in systematic error while not over-
reacting to random error.
Figure 1 shows the Kalman filter’s response to step

changes that are equivalent to introducing a prism and
later removing it. As the filter adjusts the visuomotor
mapping, the error between target and reach position
decreases exponentially with time. For a given gain K:

1 ¼ jlogð1j KÞ; ð4Þ

where 1 is the exponential time constant: Faster adapta-
tion is associated with higher gain. There is no analytical
solution for K (see Appendix A for the exact equation at
steady state), but to close approximation,

K ;
A2
x

A2
x þ Aẑ

2
; ð5Þ

where Aẑ is the uncertainty associated with measuring the
location of the feedback (measurement uncertainty) and
Ax is the uncertainty of the visuomotor mapping that
would produce unbiased performance (mapping uncer-
tainty) (Korenberg & Ghahramani, 2002).
The values of the parameters Aẑ and Ax should be

consistent with the distributions of measurements made by
the observer before the step change was introduced. If an
observed error is likely to have been caused by an

erroneous measurement, Aẑ should be large, and the
visuomotor system should adapt slowly (Equations 4 and 5).
If the visuomotor motor mapping is changing quickly, Ax

should be large, and the system should adapt quickly to
minimize what is likely to be systematic error. Figure 1
shows the effects of those parameters on the adaptation
rate of a Kalman filter. Higher values of Aẑ yield slower
adaptation and higher values of Ax yield faster adaptation.
The Kalman filter is provided the statistics, but humans
must learn the values of Aẑ and Ax from the distributions
of measurements (Baddeley et al., 2003). We presented
many trials before the step change so that human subjects
could learn the statistics and set their internal parameters
appropriately before having to respond to the step change.
We compared the adaptation rates of humans and the

Kalman filter for the same conditions. Specifically, we
examined the effects of varying measurement uncertainty
(by blurring the feedback isotropically and anisotropi-
cally) and of varying the statistical properties of the
mapping. By comparing human and Kalman filter behav-
ior, we ask whether humans take into account the
properties of the feedback and the mapping in a manner
consistent with the filter to minimize reaching error in
changing environments.

Experiment 1: Measurement uncertainty

We first investigated whether changing measurement
uncertainty (Aẑ) changes adaptation rate in humans, as it
does in a Kalman filter: specifically, whether increasing Aẑ

causes a slowing of adaptation. To do this, we used the
set-up in Figure 2 to examine adaptation rate when the

Figure 1. Kalman filter responses to step changes. The dashed black lines in each panel represent the mapping between the position of
the reach endpoint and the position of the visual feedback. This relationship is the visuomotor mapping. As in our experiments, there are
three phases: pre-step (trials 1–60), step (61–110), and post-step (111–160). A step change in the mapping occurs during the step phase;
the initial mapping is restored after the step phase. The blue curves represent the visuomotor mapping estimates (X^t) over time. The upper
and lower rows show estimates when the measurement uncertainty (Aẑ) is small and large, respectively. An increase in Aẑ causes a
decrease in adaptation rate. The left and right columns show responses when the mapping uncertainty (Ax) is small and large,
respectively. An increase in Ax causes an increase in adaptation rate; the effect is larger when Aẑ is large.
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localizability of the visual feedback stimulus was varied.
The feedback stimuli were blurry isotropic Gaussian blobs
with different standard deviations (Figure 3A). Using blur
to reduce measurement uncertainty has two advantages for
analyzing the system experimentally. First, reaching
adaptation often occurs quite quickly in humans, some-
times in only a few trials (von Helmholtz, 1867). Fast
rates are difficult to quantify from noisy data, so it is
advantageous to work with slower adaptation rates.
Second, unlike other forms of measurement uncertainty
(see Experiment 3), we can use psychophysical techniques

to determine exactly how uncertain a given amount of blur
makes the measurement of feedback position.
We first conducted a visual discrimination experiment

to determine the relationship between the amount of blur
(quantified as the standard deviation of the blob stimulus,
Ablur) and the ability to localize it visually. The just-
noticeable difference (JND) increased monotonically with
Ablur (Figure 3B). Thus, blurring had the desired effect of
increasing the uncertainty of the measurement of feedback
position. Henceforth, our estimate of feedback uncertainty
Aẑ will equal the measured JND/

ffiffiffi
2

p
.

Figure 2. Experimental setup and procedure. (A) Experimental setup. Subjects sat in front of a visual display that they viewed binocularly
from a distance of 50 cm. Their heads were restrained by a chin-and-forehead rest. Subjects held a stylus with their preferred hand on a
horizontal graphics tablet. The hand was not visible. The x–y positions of the stylus were recorded on the tablet. (B) The visual target,
actual reach endpoint, and feedback stimulus. Visual feedback was available only at the end of each reach. Reach endpoint was defined
as first place the stylus touched the graphics tablet after the reach was initiated. The upper panel shows the target (bright circle), reach
endpoint (dashed circle), and visual feedback (bright Gaussian blob superimposed on dashed circle) for trials in which the feedback and
endpoint had the pre-step mapping Xt. The lower panel shows the mapping Xt+1 after the mapping change of the step phase: the feedback
was displaced by 8.2- up and to the right (5.8- horizontally and 5.8- vertically) relative to the pre-step mapping, as indicated by the offset
between the dashed circle and Gaussian blob. A reach error Et was defined as the difference between the target and the feedback
locations. (C) Time course for a trial. The target was presented at a random position for 500 ms. Then, the subject made a rapid reach in
response to the target’s position. The position of the reach endpoint was recorded. Then a 500-ms feedback stimulus appeared whose
position was determined by the current mapping Xt. (D) Average errors (n = 24) across all three phases (pre-step, step, and post-step) for
a single condition. Post-step error reduction was generally faster than step-phase error reduction, but the same basic trends were
followed. Because it is advantageous to work with slower rates, we focus our analysis on the step rather than on the post-step data (see
Methods for details).
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We then conducted a reaching adaptation experiment
consisting of three phases (Figure 2C). During the pre-step
phase, subjects learned the initial mapping, Xt, between

the reach endpoint and the visual feedback (Figure 2B)
and gained experience with the environmental conditions
so their internal parameters could be properly set. In the

Figure 3. Stimuli and results from Experiment 1. (A) Isotropic visual feedback stimuli. They were isotropic Gaussian blobs with Ablur =
4-� 4- and 24-� 24-. (B) Just-noticeable differences (JNDs) in the visual localization experiment as a function of Ablur. Visual discrimination
thresholds increased monotonically from 0.4- to 2.4- as Ablur was increased from 4- to 24-. y = 0.16*x j 0.085, R2 = 0.9821. (C) Average
adaptation profiles for isotropic feedback stimulus. On the first trial, subjects had no information about the size and the direction of the
step, so initial errors were roughly equal to the step. Subjects gradually adjusted their visuomotor mapping estimate, X̂t, so that
the observed errors approached zero. Light blue represents the data when Ablur = 24- � 24- and green represents the data when Ablur =
4- � 4-. The upper panel plots horizontal error (in degrees) against trial number and the lower panel vertical error (also in degrees) against
trial number across trials. One degree corresponds to È2.5 mm on the tablet, so the shift of 8.2 deg corresponds to È2 cm on the tablet.
The line segments represent the data, and the smooth curves are the averages of the best-fitting exponentials (Equation 6). Exponentials
and power laws, each with two free parameters, were fit to all individual subject data (exponential: Et = (b + C)ej1(t j 1) + b; power:
Et = (b + C)tj1 + b). Exponentials provided a better fit 78% of the time (p G 1.7*10j27; sign test, n = 384 (24 subjects � 8 conditions [4- �
4-, 8- � 8-, 12- � 12-, 16- � 16-, 20- � 20-, 24- � 24-, 24- � 4-, and 4- � 24-] � 2 dimensions [x, y])). (D) Histogram of all vertical and
horizontal adaptation rates for subjects in which Ablur was 4- (green) or 24- (light blue) in the respective direction. The histogram includes
data from conditions with 4- � 4-, 4- � 24-, 24- � 4-, and 24- � 24- feedback. Rates were significantly slower in the large blur
condition (t test, p G .0001; n = 96). (E) Average time constants as a function of average visual JND for each condition of the experiment.
Exponential fits were performed along the diagonal (C = 8.2-). This includes the two conditions with anisotropic blobs plotted in Figure 4
and four additional conditions with isotropic blobs (8- � 8-, 12- � 12-, 16- � 16-, and 20- � 20-). Stimuli and data from these conditions
are shown in Supplementary Figure 1. Error bars indicate one standard deviation. The thick black line (actually a curve) shows the
predicted change of adaptation rate with feedback uncertainty for Âx = 0.08-. The thin black lines are the 95% confidence intervals (R2 =
0.61). As Âx changes, the y-intercept of the Kalman filter prediction changes, but the slope is effectively unchanged.
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step phase, we introduced a step change in the mapping:
Visual feedback was shifted 8.2- up and to the right.
The step persisted until the post-step phase when the
original mapping was restored. Data from a full run of
160 trials are shown in Figure 2D. Adaptation was
assessed by examining reaching errors during the step
phase (see Methods section for why we did not focus on
post-step data). For our experiments, reaching error Et is
the difference between the locations of the visual
target and visual feedback on trial t. To quantify adap-
tation rate, we fit an exponential function separately for
the x and y directions to each subject’s reaching errors
across trials:

Et ¼ ðbþ CÞej1ðtj1Þ þ b; ð6Þ
where 1 is a time constant, b is a bias term, C is a constant
equal to the shift, and t is the trial number. We defined
adaptation rate as the time constant (1) of the best-fitting
exponential.
Figure 3C shows average reaching errors across trials

for the small and the large feedback blobs. Reaching
responses were averaged because trial-by-trial errors for
individual subjects were quite variable. The smooth
curves are the average of all subjects’ best-fitting
exponentials. Note that the curves look more like power
laws than exponentials. There are two possibilities for
this: (a) the individual profiles could be best characterized
by power laws, a possibility that would fatally undermine
the Kalman filter model, or (b) the individual profiles could
be best characterized by exponentials since the average of
multiple exponentials with different time constants approx-
imates a power law (Heathcote, Brown, & Mewhort, 2000;
Wickens, 1999). To determine the decay function most
appropriate to the individual subject data, we fit all
individual error profiles from Experiments 1 and 3 with
both exponential and power functions with the same
number of free parameters (see caption for details). We
found that exponentials provided better fits 78% of the
time, a highly significant result (p G 1.7*10j27; sign test).
This justifies our use of exponentials to analyze indi-
vidual subject data and indirectly supports the Kalman
filter model.
Although the Kalman filter predicts asymptotes at zero,

many individual adaptation profiles appeared to asymptote at
values greater than zero. The non-zero asymptote, b,
presumably manifests a bias to either mislocalize the
feedback or reach toward the center of the display screen
and was not incorporated in our Kalman filter model.
Because we are interested primarily in learning rate and
since removing constant bias from the data has been shown
not to affect estimates of rate (Cheng & Sabes, 2006), we
focus on the time constants required to fit the data and not
on the bias.
Figure 3D shows the distribution of the best-fitting

exponential time constants across subjects for the small

and large blur conditions. Figure 3E summarizes the
adaptation data by plotting the average time constants as a
function of feedback uncertainty (Aẑ). Like a Kalman
filter, subjects adapted more slowly when the position of
the feedback was less certain.
We can examine the relationship between human and

Kalman behavior in another way. Once a Kalman filter
has settled to steady state, K is fully determined by the
visuomotor-mapping uncertainty, Ax, and measurement
uncertainty, Aẑ (Appendix A). We set Aẑ to the value of
the visual JND/

ffiffiffi
2

p
(tantamount to making the reasonable

assumption that the JND/
ffiffiffi
2

p
manifests the measurement

uncertainty). We then assumed different values for Ax

and determined how the filter’s adaptation rate changes
with Aẑ. For each assumed value of Ax, there is a line
relating the visual JND to adaptation rate. All the
lines have approximately the same slope. The line in
Figure 3E shows the behavior of the Kalman filter that
fits our data best (R2 = 0.61). The change in adaptation
rate observed in humans is similar to the pattern of
rate changes in the optimal adaptor. The value of
Âx that provides the closest agreement is 0.08- (95% CI =
0.04-–0.11-). Clearly, humans adapted at rates consis-
tent with the Kalman filter as the feedback was made
less certain.
We also wondered whether adaptation rates can be

spatially anisotropic (Cheng & Sabes, 2006). If measure-
ment uncertainty is greater in one direction than in
another, a Kalman filter would adapt more slowly in the
direction of greater uncertainty. We investigated this by
presenting feedback blobs that were elongated horizon-
tally or vertically (Figure 4A). After the introduction of a
step change in the mapping, reaching errors were indeed
reduced more slowly in the direction of greater blur
(Figure 4B). Adaptation rate in a given direction was
influenced only by the measurement uncertainty in that
direction; as predicted by the Kalman filter, anisotropic
rates do indeed occur.
Adaptation rates that differ by direction yield interesting

spatial patterns of reaching over time. Figure 4C shows
the Kalman filter’s pattern of horizontal and vertical
reaching errors in the adaptation phase. With isotropic
feedback uncertainty, the filter’s horizontal and vertical
rates are similar, and the spatial distribution of errors
over time is linear. With anisotropic feedback, however,
the filter’s horizontal and vertical rates differ, so the
distributions are curved (Figure 4C). Replotting the data
in Figure 4B reveals that these effects occurred in humans
as well (Figure 4D). With symmetrically blurred feed-
back, subjects reached progressively more downward and
leftward along a straight path toward the target. With
anisotropic blur, subjects’ reaches progressed along
curved paths. Thus, in both humans and in the Kalman
filter, adaptation rate slows when uncertainty increases,
and the slowing in a given direction is influenced only by
the uncertainty in that direction.
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Figure 4. Stimuli and results from Experiment 1 comparing anisotropic and isotropic visual feedback conditions. (A) Gaussian blobs with
Ablur = 4- � 4-, 24- � 24-, 4- � 24-, and 24- �4- used as visual feedback. (B) Average adaptation profiles for isotropic and anisotropic
feedback stimuli. Red and dark blue represent the data when the feedback stimulus was anisotropic: Ablur = 4- � 24- and 24- � 4-,
respectively. As in Figure 3, green and light blue represent the data when the feedback was isotropic: Ablur = 4- � 4- and 24- � 24-,
respectively. The upper panel plots horizontal error across trials, and the lower panel plots vertical error across trials. The line segments
represent the data, and the smooth curves are the average of the best-fitting exponentials. A repeated measures ANOVA on the best-
fitting exponential rates with blur as a factor revealed that the low blur conditions were significantly faster than the high blur conditions
(F(1,23) = 54.4, p G .0001). Multiple comparison tests showed that the conditions with low blur in each direction were significantly faster
than the high-blur conditions, and that the low-blur conditions did not differ significantly from each other. (C) Spatial profiles for a Kalman
filter in response to a step change in the mapping. Horizontal error is plotted as a function of vertical error. Initially, the reaching error
corresponds to the step change (5.8- horizontally and vertically), so the error is large (upper right). As the filter adjusts its responses over
time toward the goal of zero error (lower right), the horizontal and the vertical errors change. When the blur is isotropic (green and light
blue), the horizontal and the vertical adaptation rates are the same, so errors progress along a diagonal toward zero error. When the blur
is anisotropic (red and dark blue), horizontal and vertical adaptation rates differ, so errors progress along curves, the direction of the curve
depending on the direction of least blur. The Kalman filter’s parameter for measurement uncertainty Aẑ was set equal to the human visual
JNDs for the corresponding conditions. The filter’s parameter for mapping uncertainty Âx was set equal to 0.08-, the estimated value of
baseline visuomotor mapping uncertainty (see Figure 3E). (D) Spatial profiles for the average human data plotted in the same format.
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Experiment 2: Mapping uncertainty

Increasing the uncertainty of the visuomotor mapping,
Ax, produces faster adaptation in the Kalman filter
(Equations 4 and 5). As we said earlier, this makes sense.
If the mapping changes frequently, the system should
adjust its mapping estimate quickly in response to an error
because the previous mapping estimate is less likely to be
correct. If the mapping has been stable, adjustments
should be slow because it is likely that the mapping from
previous trials is correct and that the error was due to
measurement error.
Toexamine theeffectofmappinguncertainty,we imposed

a random walk on the relationship between the reach

endpoint and the visual feedback position in addition to the
step presented in Experiment 1. A random walk is a good
mathematical description of many natural processes such
as the motion of a molecule in a gas: its direction changes
frequently and unpredictably. The walk value was:

Wtþ1 ¼ Wt þ Nð0;AwalkÞ; ð7Þ

where N(0, Awalk) is a Gaussian random variable with
mean 0 and standard deviation Awalk. In the pre- and post-
step phases, (xV, yV) = (x + Wx, y + Wy), where (xV, yV) were
the coordinates of the reach endpoint on the graphics
tablet, (x + Wx, y + Wy) were the screen coordinates of the
feedback, and Wx and Wy were the horizontal and vertical

Figure 5. Stimuli and results from Experiment 2. (A) Example
random walks (plus step change) with Awalk = 0.9- and Awalk =
2.5-. (B) Reach endpoints multiplied by j1 from two representa-
tive subjects (blue traces) in response to two random walks with
Awalk = 0.9- applied to the mapping between reach endpoint and
visual feedback positions (solid black traces). Subject mapping
estimates clearly followed the walks. The random walks that were
added to the step changes were mirror images of one another.
The average of the walks was identical to the trial-by-trial stimulus
values in Experiment 1 (dashed black trace). Variation due to the
walks was nulled by averaging across all walks in Experiment 2.
(C) Average adaptation profiles for the random walks during the
step phase. Errors are plotted against trial number. Because walk
statistics were isotropic within a condition, error was calculated in
the direction of the constant shift (rather than in x and y
separately). Dark blue: Awalk = 0.9- � 0.9-; Ablur = 24- � 24-.
Gray: Awalk = 2.5- � 2.5-, Ablur = 24- � 24-. Black: Awalk = 0.9- �
0.9-, Ablur = 4- � 4-. Orange: Awalk = 2.5- � 2.5-, Ablur = 4- � 4-.
Walk standard deviation was chosen to be equivalent to the visual
JNDs for Ablur = 4- � 4- and 24- � 24-. The curves are the best-
fitting power laws to the data averaged across subjects. Expo-
nentials could not be fit to the individual data because of the drifts
associated with the random walks. The rates displayed on the
right are the exponents of the best-fitting power laws. An increase
in walk variability yields an increase in adaptation rate with large
blur. (D) dV for discriminating adaptation rates as a function of
visual JND. Circles indicate the two blur conditions in our
experiment. Assuming that the system estimate of mapping
uncertainty, Âx, is roughly equal to Awalk, rate predictions were
made for the two levels of Awalk imposed in Experiment 2 at
multiple blur levels (Equations 4 and 5; Appendix A). Circles mark
the blurs tested in Experiment 2. 1000 exponential adaptation
profiles were generated with the predicted 1. After corrupting each
profile with motor noise (estimated from the pre-step phase of
Experiment 1 (Amotor = È2-), we fit each individually with an
exponential. dVwas calculated from the resultant distributions of
best-fit 1s. dVwas 0.2 and 2.6 in the low- and high-blur conditions,
respectively. Thus, high rates are difficult to measure reliably
because subjects adapt quickly over the first few trials. We
therefore do not expect a measurable effect of Awalk when blur is
low.
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components of Wt. After the pre-step trials, step-phase
trials were presented with a constant shift between the
reach endpoint and the feedback: (xV, yV) = (x + Wx + 5.8-,
y + Wy + 5.8-). We manipulated mapping variability by
changing Awalk. Figure 5A shows examples of how the
mapping between reach endpoint and feedback changed
for two random walks with different values of Awalk.
Figure 5B shows trial-by-trial mapping estimates from
two representative subjects in response to two random
walks with the same variability. Clearly, subjects adjusted
their mapping estimates to follow the walk.

We expect that faster adaptation rates will be associated
with walks of greater variability. However, our ability to
measure this effect should be affected by measurement
uncertainty. As in Experiment 1, we expect that conditions
with large blur will on average yield slower adaptation than
those with small blur. When adaptation is slow, it is
relatively easy to quantify the rate because error decreases
over many trials. When adaptation is fast, however, it is
quite difficult to quantify the rate because the error is
minimized in only a few trials. Assuming that measurement
uncertainty is equal to the visual JND/

ffiffiffi
2

p
(Experiment 1)

and that the system estimate of mapping uncertainty Âx is
equal to Awalk, the initial error would be reduced by È97%
in two trials when the blur is small. Thus, we expect to find
a large effect of walk variability with large blur and little if
any effect when blur is small.
Figure 5C shows reach errors averaged across subjects.

As expected, with large blur, adaptation was faster with
larger Awalk, and with small blur, there was no discernible
effect. There was also a clear effect of the localizability of
the feedback: Adaptation was slower with large blur.
Because of the previously mentioned difficulty of measur-
ing changes in adaptation rate at high rates, we could not
determine whether human rates slowed with increasing
Awalk in the small-blur conditions of this experiment. But
for the conditions in which we can observe rate changes
reliably, the pattern of human and filter rate changes were
similar. This supports the idea that humans adjust
adaptation rate with mapping variability changes in a
manner consistent with a Kalman filter.

Figure 6. Results fromExperiment 3. (A) Results from Experiment 3a.
The insets in panel b represent Aperturb for the various
conditions; Ablur was fixed at 4- � 4- for all conditions. Black:
Aperturb = 0.9- � 0.9-. Light blue: Aperturb = 2.5- � 2.5-. Dark blue
and red: Aperturb = 2.5- � 0.9- and 0.9- � 2.5-, respectively. Note
that these standard deviations are equivalent to the visual JNDs
for the corresponding conditions in Experiment 1. The upper data
plot shows horizontal error over trials and the lower plot shows
vertical error over trials. The line segments represent the data,
and the smooth curves are the averages of the best-fitting
exponentials. A repeated measures ANOVA with perturbation as
a factor showed no effect of Aperturb on adaptation rate (F(1,23) =
0.25, p G 0.62). (B) Average spatial profiles of reach errors over
trials. Vertical error is plotted as a function of horizontal error as in
Figure 4D. The profiles were linear for all forms of random
perturbation. Note the different pattern of results in Experiment 1.
(C) Stimuli and results from Experiment 3b. The insets
represent Aperturb for the various conditions; Ablur was varied.
Light blue: Aperturb = 0.9- � 0.9-; Ablur = 24- � 24-. Dark blue:
Aperturb = 2.5- � 2.5-; Ablur = 24- � 24-. Black: Aperturb = 0.9- �
0.9-; Ablur = 4- � 4-. Red: Aperturb = 2.5- � 2.5-; Ablur = 4- � 4-. An
ANOVA showed there was again no effect of Aperturb (F(1,23) =
0.19, p G 0.67). Blur continued to produce a main effect (F(1,23) =
14.52, p G 0.0009).
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Experiment 3: Random trial-by-trial variability

In the first experiment, we showed that blurring the
stimulus (increasing Ablur) made the feedback difficult to
localize and resulted in slower adaptation, an effect
probably caused by an increase in the system estimate of
measurement uncertainty (Âẑ ). In the second experiment,
we showed that adding a random walk to the visuomo-
tor mapping (increasing Awalk) resulted in faster adapta-
tion; an effect probably caused by an increase in
the system estimate of mapping variability (Âx).
There is a third source of variability in rapid reaching
(Aperturb): random trial-by-trial variation in the reach
endpoints due, for example, to noise in reach execution
(motor noise). We next asked how the system responds
to such variations.
Random perturbation, like blur, reduces the certainty

with which the system can use a given error to estimate
the difference between its current mapping estimate X̂t and
the mapping necessary to produce unbiased performance
Xt (Baddeley et al., 2003). Random perturbation should
therefore affect the measurement uncertainty parameter
Aẑ. The adaptation rate of an optimal adaptor, assuming
stationary statistics (i.e., constant measurement andmapping
uncertainties), should therefore slow down. This is similar to
the effect of blurring the feedback (Experiment 1), but
unlike blur, the amount of random perturbation cannot be
estimated from a single observation, so Aperturb may have
more or less effect depending on how the system estimates
measurement uncertainty.
Random perturbation could conceivably be treated as

mapping uncertainty, thereby affecting the system’s
estimate of Ax. This would be non-optimal, however,
because with random perturbation the mean of the
mapping never changes, so the variance of the change in
the mapping producing unbiased performance is unaf-
fected by Aperturb (Appendix B). In fact, the variance of
the change in the mapping yielding unbiased performance
is 0. Thus, one expects that random perturbation should
not cause an increase the system’s estimate of mapping
uncertainty.
To investigate how the system responds to perturbations

that are uncorrelated from trial to trial, we conducted two
experiments. In the pre- and post-step phases, a reach
endpoint at (xV, yV) generated feedback at (x + Px, y + Py),
where Pt = N(0, Aperturb) and N is Gaussian with mean 0
and standard deviation, Aperturb. As before, the pre-step
phase allowed subjects to learn the properties of the
mapping and feedback. During the step phase, reach
position (xV, yV) generated feedback at (x + Px + 5.8-, y +
Py + 5.8-). In Experiment 3a, Ablur was fixed and small,
and the values of Aperturb were essentially equivalent to the
visual JNDs for isotropic and anisotropic blobs in Experi-
ment 1. Interestingly, Aperturb had no measurable effect on
adaptation rate (Figure 6A). The spatial error profiles
across trials were therefore roughly linear whether Aperturb

was anisotropic or not (Figure 6B). Experiment 3b was

similar to Experiment 2 except that the mapping was
changed via random perturbation instead of a random walk.
The blur of the feedback was also varied. There was again
no measurable effect of Aperturb. Adaptation rates were
determined only by feedback localizability: They were fast
with small blur and slow with large blur (Figure 6C). The
same pattern of results was observed in Experiment 1 when
Aperturb was 0-.
The adaptation rate of the Kalman filter slows when

random perturbation is added to the feedback. We found in
contrast to this that increasing random perturbation has no
measurable effect on adaptation rate in humans. The lack of
an effect of adding random perturbation has been observed
previously (Diedrichsen et al., 2005; Donchin et al., 2003;
Smith & Shadmehr, 2004; but see Baddeley et al., 2003,
and Appendix C). In this case, human behavior is not
consistent with that of an optimal adaptor at least for the
assumptions we used in constructing the algorithm. We
will examine those assumptions in the Discussion section.

Discussion

We developed an optimal adaptor and studied how it
responds to changes in the statistics of the input. By doing
so, we could determine the degree to which humans use
the available sensory information to minimize reaching
errors over time and thereby maintain visuomotor cali-
bration. In our first experiment, we found that adaptation
rate is reduced in humans and the optimal adaptor in the
same direction-specific manner when feedback uncer-
tainty is increased by spatially blurring the stimulus. In
the second experiment, we found that adaptation rate
increases in both humans and optimal adaptor when the
variability of the visuomotor mapping is increased by a
random walk. In the third experiment, we observed
different behaviors in humans and optimal adaptor:
Injecting random perturbation in the feedback causes
adaptation to slow down in the optimal adaptor but had
no effect in humans. In the remainder of the discussion,
we consider the implications of our results.

Measurement uncertainty

The fact that feedback localizability affects adaptation
rate and does so in a manner consistent with the Kalman
filter has important implications for visuomotor and inter-
sensory calibration. Any stimulus property that affects the
reliability of the system’s measurements of feedback
position should also affect adaptation rate. When the feed-
back is visual, such properties include blur (Kayargadde &
Marten, 1996), luminance (Waugh & Levi, 1993a), contrast
(Waugh & Levi, 1993b), duration (Waugh & Levi, 1993b),
retinal eccentricity (Levi & Klein, 1985), and whether the
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feedback is in the frontal plane or in depth (Gepshtein &
Banks, 2003; van Beers et al., 2002). In inter-sensory
calibration, measurement uncertainty should affect adapta-
tion rate in the fashion we observed with open-loop
reaching. Consider, for example, recalibrating auditory–
visual location maps after conflicts are introduced via
monaural earplugs or prism lenses (Hofman, Van Riswick,
& Van Opstal, 1998; Knudsen & Knudsen, 1985; King
et al., 2001; King, Parsons, & Moore, 2000; Zwiers, Van
Opstal, & Paige, 2003). The nervous system should adjust
the mapping at a rate determined in part by the uncertain-
ties of the visual and the auditory signals: Adaptation
should occur more rapidly when the positions of visual and
auditory stimuli are well specified and more slowly when
they are poorly specified (Ghahramani et al., 1997;
Korenberg & Ghahramani, 2002). It would be interesting
to see if this prediction is borne out.

Mapping uncertainty

We found that more variable random walks yielded
faster adaptation (Figure 5C). It is sensible to speed up
adaptation when current errors are predictive of future
ones, as they are with positively correlated time series
such as random walks. By similar reasoning, negative
correlations should cause adaptation to slow down. Smith
and Shadmehr (2004) observed these behaviors: Adapta-
tion rate increased in response to positively correlated
error signals (i.e., random walks) and decreased in
response to negatively correlated signals.
These findings have implications for calibration

between sensory signals. Two sensory estimators that are
often miscalibrated should adapt more quickly than two
that are tightly coupled. Consider, for example, two
signals from two senses as opposed to two signals from
within one sense. There are presumably more causes of
miscalibration in the former case (e.g., vision and touch)
than in the latter (e.g., two visual depth cues) (Hillis,
Ernst, Banks, & Landy, 2002). By this reasoning,
adaptation should be more sluggish within than between
senses. This prediction is supported by experimental data.
When two visual depth cues are re-calibrated relative to
one another, adaptation is slow (Adams, Banks, & van Ee,
2001); when visual and proprioceptive location cues are
recalibrated, adaptation is fast (Harris, 1963; Hay & Pick,
1966). The principle that frequent mapping changes
should increase adaptation rate may generalize to other
learning domains: The more frequently the system needs
to learn, the faster it should learn.
Another reason for slow adaptation may be the com-

plexity of the mapping changes, a factor not included in
our instantiation of the Kalman filter. Numerous studies
have shown that the visuomotor system adapts slowly or
incompletely to non-uniform scalings (Bedford, 1989,
1993a, 1993b). For example, after receiving progressive
lenses for correcting presbyopia, people often experience

mild vertigo for 1 to 2 weeks (Brandt & Daroff, 1980).
Progressive lenses introduce different magnifications for
different elevations in the visual field. This change
between vision and other sensorimotor systems is more
complex than that associated with standard lenses.
Although the relevant mapping change is inter-sensory,
adaptation is slow probably because the change intro-
duced by the progressive correction is outside the realm of
experiences the system normally encounters.

Random perturbation

In an environment with stationary statistics, the adapta-
tion rate of a Kalman filter decreases with increases in
random perturbation. In contrast, we observed no change
in rate as the amount of random perturbation was varied
(Figure 6). As we said earlier, this result is consistent with
earlier reports (Diedrichsen et al., 2005; Donchin et al.,
2003; Smith & Shadmehr, 2004). There are at least three
plausible explanations for non-optimality in the response
to random perturbation. (1) The system estimate of
feedback uncertainty (Âẑ ) may be derived only from
information that is available in a single observation (e.g.,
stimulus blur) and not from information that must be
obtained over many observations (random perturbation).
However, in the random walk experiment that adaptation
rate is adjusted based on experience with previous trials.
Specifically, we found evidence that Âx is adjusted based
on experience with previous trials. It therefore seems
unlikely that previous trials are not considered for the
estimation of Aẑ. (2) Random perturbation may increase
the system’s estimates of both Aẑ and Ax such that their
opposing effects cancel and no measurable change in
adaptation rate occurs. This also seems unlikely because
there is no obvious reason both estimates should be
affected in the same way by random perturbation. (3) The
speed at which changes in environmental statistics can be
learned may differ for random perturbations and random
walks. The rate for learning changes in the statistics should
depend on how reliably the changes can be determined.
Changes in uncorrelated noise (Aperturb) that must be
estimated from past measurements may be more difficult
(i.e., slower) to learn than changes in correlated noise
(Awalk). If this is the case, the pre-step phase of Âẑ

whereas the pre-step phase of Experiment 2 would have
had enough trials to update Âx. Further research is needed
to determine how the visuomotor system learns the
statistics of the environment.
Our experimental results do not allow us to evaluate

these explanations empirically, but the third one makes
sense. When estimating measurement and mapping uncer-
tainties from the environment, the nervous system is not
given estimates of the correlated and the uncorrelated
mapping variation directly; rather it must estimate them
from the stream of incoming observations. The estimation
could be done precisely with many observations if the
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environmental statistics were stationary, as we assumed in
the construction of the optimal adaptor. However, the
statistics in the everyday environment might well not be
stationary (i.e., measurement and mapping uncertainty
change over time). Using many observations would make
the system slow to respond to changes in these statistics. To
retain responsiveness, the nervous system should estimate
parameters over few observations, the exact number
depending on how quickly the statistics are likely to change
and how reliably the statistics can be determined. With few
observations, uncorrelated mapping variation cannot be
fully distinguished from correlated variation. The system
might be biased to interpret uncorrelated as correlated
variation because the statistics of random and systematic
error probably change at different rates (Körding, Tenen-
baum, & Shadmehr, 2007). Another possibility is that it
may simply take longer to reliably learn changes in
uncorrelated than correlated variation.
No matter which explanation proves correct, the

observation that changes in random perturbation do not
affect rate over short time periods, while changes in
feedback blur do, is an important step toward identifying
the behaviorally relevant variables. It will be important in
future research to determine the form of an optimal
adaptor for an environment with changing statistics.

Cue combination and cue calibration

The work presented here is relevant to recent work on
how noisy sensory signals are combined to determine the
most likely state of an environmental property. Bayes’
Law prescribes the statistically optimal method for
combining noisy signals; it can be re-written as a
weighted sum of sensory estimates by making some
reasonable assumptions (Cochran, 1937; Landy &
Kojima, 2001). For k estimators providing sensory
estimators of environmental property S:

Ŝc ¼
Xk

i¼1

wiŜi; where wi ¼ Aj2
iXk

j¼1

Aj2
j

; ð8Þ

where Ŝc is the combined estimate and Ŝi is the estimate
from the ith estimator (Ŝi = fi(S)). The resultant, Ŝc, is more
precise (less variable) and more accurate (closer to
correct) than the individual estimates alone (Ernst &
Banks, 2002; Ghahramani et al., 1997; Oruç, Maloney, &
Landy, 2003) if the individual estimators are calibrated.
Substantial experimental evidence supports the idea that
signals from different sensory modalities (Alais & Burr,
2004; Bresciani, Dammeier, & Ernst, 2006; Ernst &
Banks, 2002; Gepshtein, Burge, Ernst, & Banks, 2005;
Roach, Heron, & McGraw, 2006) and from within a
modality (Helbig & Ernst, 2007; Hillis et al., 2002; Landy
& Kojima, 2001; Saunders & Knill, 2003) are combined
in this fashion.

However, the cue-combination model in Equation 8
assumes unbiased (calibrated) estimators without providing
a mechanism for achieving their calibration. A measure-
ment of an environmental property by a miscalibrated
estimator will not agree on average with measurements
from calibrated estimators. Combining such measurements
would decrease rather than increase accuracy, thereby
undermining one of the potential benefits of cue combina-
tion. To avoid this, the nervous system must incorporate a
method for calibrating the estimators relative to one
another. As we said, the Kalman filter is the optimal
algorithm for such re-calibration (Ghahramani et al., 1997;
Korenberg & Ghahramani, 2002). Consider sensory
estimates Ŝ1 and Ŝ2 produced by estimators f1 and f2 and
a current mapping estimate between the estimators of X̂t.
The error with each new observation of Ŝ1 and Ŝ2 is Êt =
Ŝ1t j Ŝ2t; the filter sets the mapping X̂t + 1 to minimize the
error over time (Equation 3). The measurement uncer-
tainty is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2

p
. The mapping uncertainty, Ax, repre-

sents how variable over time measurements from two
sensory estimators are relative to each other. A long-
standing stable relationship between estimates should
yield a low value for Ax; a historically unstable relation-
ship should yield a high value.
Mapping uncertainty is not expressed in the prevailing

cue-combination model (Equation 8). Rather, the model
assumes that the mapping is fixed and that the system
estimates it without error or uncertainty. Under these
conditions, we expect sensory signals to be fused into one
estimate. However, the mapping may change and the
mapping estimate can be uncertain. Interestingly, combined
cues are not always fully fused; in some cases, access to the
individual signals is retained (Hillis et al., 2002). To
account for the observation that signals are fused to varying
degrees, a coupling prior has been proposed (Ernst, 2005);
it represents the probability distribution of naturally
occurring mappings between two estimator signals and
determines the degree to which the signals should be fused.
We propose that the coupling prior is equivalent to the

mapping uncertainty described above. Thus, we predict
that signals that are fully fused, or nearly so, should be
associated with estimators that adapt very slowly to
conflict, and that signals that are kept independent should
be associated with estimators that adapt quickly.

Conclusion

We compared the rates at which visuomotor recalibration
occurs in humans and an optimal adaptor. The comparison
allowed us to identify the stimulus properties that deter-
mine rate and to provide a theory-driven account of how
and why interaction with the environment adjusts the rate
of recalibration in reaching. We showed that adaptation
rates slow down and speed up in a fashion predicted by
measurement reliability and environmental statistics. The
response to random perturbation is non-optimal for an
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environment with stationary statistics but might be optimal
for changing statistics. The specific mechanisms by which
the nervous system measures reliability and statistics
should be a focus of future investigation.

Methods

Apparatus and stimuli

Visual stimuli were presented on a vertical 220� 200-cm
back-projection screen illuminated by a digital projector
(JVC D-ILA DLA-C15 with XGA resolution). At the
50-cm viewing distance, the screen subtended 131-� 127-.
Average luminance was 3.7 cd/m2. Subjects’ heads were
restrained by a chin-and-forehead rest. A graphics tablet
(AIPTEKi Hyper Pen 1200 USB) was placed horizon-
tally below the chin rest and in front of the subject’s torso
where subjects could not see it. The tablet’s active area
was 30.4 � 22.8 cm (Figure 2A).
The visual stimuli were targets and feedback. The target

stimuli were small high-contrast circles (diameter = 1-).
The feedback stimuli were low-contrast (È10%) Gaussian
blobs with various widths (Ablur) and aspect ratios. Target
and feedback stimuli were presented for 500 ms.

Procedures
Visual feedback localization experiment

For the analysis of visuomotor behavior, we needed to
know how well the various visual feedback stimuli could
be localized. To determine this, we conducted a visual
discrimination experiment. The stimuli were Gaussian
blobs with different widths. Some were isotropic with
standard deviations of 4-� 4-, 8-� 8-, 12-� 12-, 16-� 16-,
20- � 20-, and 24- � 24-; others were anisotropic with
standard deviations of 24- � 4- and 4- � 24-. We used a
two-interval, forced-choice procedure to measure local-
ization thresholds. In the first interval, a standard blob
appeared in a random location. In the second interval, a
comparison blob appeared left or right of the first. The
subject indicated with a key press whether the comparison
was left or right of the standard. We also ran the experiment
with the comparison above or below the standard in which
the subject indicated whether the comparison was above
or below.
The separation between the standard and the compar-

ison blobs was varied with the method of constant stimuli
(T0.2-, T0.4-, T0.6-, T0.9- for the smallest blobs; T1.2-,
T2.3-, T3.5-, T4.6- for the largest blobs). All blobs within
an experimental block had the same dimensions. Each
block had 160 trials. Each subject completed two blocks
for each condition. Block order was randomized for each
subject. In all, they completed 2560 trials (40 presentations

of 8 comparison values for 8 blob sizes). We fit the
resulting data with a cumulative Gaussian using a max-
imum-likelihood criterion (Wichmann & Hill, 2001a,
2001b). The standard deviation of the best-fitting Gaus-
sian was the just-noticeable difference or JND. We
divided the JND by

ffiffiffi
2

p
to determine the standard

deviation of the underlying estimate (Wickens, 2002).
JNDs were averaged across subjects to obtain the local-
ization JND for each stimulus condition.

Reaching adaptation experiments

Subjects reached with a stylus held by the preferred
hand. The starting position for each movement was a
small knob close to the near end of the tablet. Before each
trial, the subject moved the stylus to the starting position.
When the subject pressed a button on the stylus, the trial
began. The visual target appeared in a random screen
position within an invisible 7.7- square centered straight
ahead. Subjects were instructed to rapidly move the stylus to
the position on the tablet that corresponded to the target
position on the projection screen. Average movement
duration was È600 ms and average movement distance
was È15 cm. The visual feedback stimulus then appeared
immediately on the projection screen at a position associated
(via the visuomotor mapping) with the reach endpoint.
Movement endpoint was determined by the stylus’ first
contact with the tablet after leaving the start position.
Subjects were instructed to reach to the position that would
make the center of the feedback stimulus appear in the same
location as the target. Reach error Et was defined as the
difference between visual target and feedback locations. To
perform the task, subjects had to learn the visuomotor
mapping, Xt, from tablet coordinates to screen coordinates
(Figure 2B). None had difficulty doing so.
Before each experimental session, subjects completed a

training session of 200 trials to become familiar with the
task and to learn the mapping between screen and tablet
coordinates. During training, the visual feedback stimulus
was a small circle that could be accurately localized.
Each experimental condition consisted of 160 trials. In

the 60 pre-step phase trials, visual feedback appeared at the
corresponding position of the reach endpoint: tablet position
(xV, yV) generated feedback at screen position (x + Xtx, y +
Xty). In the step phase (50 trials), the feedback was
displaced up and to the right by 8.2- from the correspond-
ing position of the reach endpoint: tablet position (xV, yV)
produced feedback at screen position (x + Xtx

+ 5.8-, y +
Xty

+ 5.8-). In the post-step phase (50 trials), the step change
was removed: tablet position (xV, yV) again generated
feedback at screen position (x + Xtx, y + Xty) (Figure 2C).
Each experiment contained several blocks that differed

in the visual feedback provided and in the statistical
properties of the mapping. To prevent practice effects, the
blocks were presented in random orders that differed
across subjects. Twenty practice trials, just like those in
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the training session, were presented at the beginning of
each block. An experimental session lasted about 45 min.
The experiment was designed to minimize the possible

influence of proprioceptive feedback. First, subjects
reached in a plane orthogonal to the plane in which the
visual feedback appeared so the proprioceptive location
was never similar to the visual feedback location. Thus, to
use the proprioceptive signal, it would have had to be
converted from tablet coordinates to screen coordinates,
and that conversion would presumably make the signal
less reliable. Second, subjects were instructed to minimize
the discrepancy between the visual feedback and the
visual target location, so the proprioceptive signal would
not have been useful for satisfying this instruction.
Although we think it is unlikely, it is nevertheless possible
that proprioceptive feedback influenced behavior. If this
were the case, it would have the effect of reducing the
estimated error. For example, consider the first trial after
the step change: the visual system would indicate a large
error and the proprioceptive system would indicate zero
error. If the magnitude of estimated errors were reduced,
slower adaptation would result. This, in turn, would lead
to an underestimation of the system estimate of mapping
uncertainty, Âx (see Figure 3E).
Post-step data followed the same trends as the step data,

but we did not analyze it because post-step data are
difficult to deal with for two reasons. (1) Post-step
adaptation is generally faster (consistent with previous
findings; Devane, 1968) and discriminating between fast
rates is more difficult than discriminating between slow
rates (see Figure 5D caption). (2) The error profiles in the
post-step phase have an undetermined starting point
because the error on the first trial of the post-step phase
depends on the error of the final trial of the step phase.
This necessitates a three-parameter exponential fit to
individual subject error profiles instead of the two-
parameter fit that was used throughout the paper.

Observers

Twenty-four subjects between the ages of 18 and 40 years
participated in each reaching experiment. Ten subjects
between the ages of 18 and 40 years participated in the
visual localization experiment. All subjects were unaware of
the experimental hypotheses and were paid for their
participation. All had normal or corrected-to-normal vision.

Appendix A

This discussion follows Maybeck (1979), but with the
terms and equations tailored to the issues raised in the
manuscript.

Consider two estimates X̂1 and X̂2 of the same environ-
mental property. Equation 8 in the main text is the
maximum-likelihood estimate for a linear system with
Gaussian-distributed noise and conditional independence
between the estimates. Rewriting that equation:

X̂c ¼ w1X̂1 þ w2X̂2; where

w1 ¼
AX̂ 2

2

AX̂ 1

2 þ AX̂ 2

2

w2 ¼
AX̂ 1

2

AX̂ 1

2 þ AX̂ 2

2
:

The variance is

AX̂ c

2 ¼ AX̂ 1

2
AX̂ 2

2

AX̂ 1

2 þ AX̂ 2

2
: ðA2Þ

Now consider a visuomotor mapping X drifting in time
and an estimate of that mapping X̂. The best estimate at
the current time just before a measurement is made is X̂t

j,
and the measurement of the mapping at the current time-
step is Ẑt. Again assuming Gaussian noise and conditional
independence, the best estimate of the mapping (immedi-
ately after the current measurement) is

X̂
þ
t ¼ wXj

t
X̂
j

t
þ wẐ t

Ẑt; where

wX̂
j
t
¼ AẐ t

2

A2

X̂
j
t
þ AẐ t

2

wẐ t
¼

A2

X̂
j
t

A2

X̂
j
t
þ AẐ t

2
:

ðA3Þ
Adding and subtracting wẐt

X̂t
j yields

X̂
þ
t ¼ wX̂

j
t
X̂
j
t þ wẐ t

Ẑt jwẐ t
X̂
j
t þ wẐ t

X̂
j
t : ðA4Þ

Regrouping and using the fact that wẐt
+ wX̂t

j = 1 yields

X̂
þ
t ¼ X̂

j
t þ wẐ t

ðẐt j X̂
j
t Þ: ðA5Þ

Setting K = wẐt
and defining Êt = Ẑt j X̂t

j:

X̂
þ
t ¼ X̂

j
t þ KðÊtÞ; ðA6Þ

which is the standard form of the measurement-update
equation of the Kalman filter. The variance of that best
estimate is

A2

X̂
þ
t

¼
A2

X̂
j
t

AẐ t

2

A2

X̂
j
t

þ AẐ t

2
; ðA7Þ

(A1)
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and the Kalman gain is

Kt ¼
A2

X̂
j
t

A2

X̂
j
t

þ AẐ t

2
: ðA8Þ

These are the three measurement-update equations of the
Kalman filter.
Now consider incorporating the mapping change

dynamics into the mapping estimation algorithm. For
simplicity, assume that the best model of the mapping
changes has the form ¯X

¯t = u + x, where u is the average
change in mapping and x is the uncertainty associated
with the average change in mapping. Assuming unit time
steps, the best estimate of the mapping and the variance of
that estimate just before the next measurement are

X̂
j
tþ1 ¼ X̂

þ
t þ u; ðA9Þ

A2

X̂
j
tþ1

¼ A2

X̂
þ
t

þ A2
x: ðA10Þ

These are the so-called state-update equations of the
Kalman filter. Once the system has reached steady state,
AX̂t+1

j
2

= AX̂t
j

2
so by Equation A10:

A2

X̂
j
t

¼ A2

X̂
þ
t

þ A2
x : ðA11Þ

Substituting into Equation A8 yields

Kt ¼
A2

X̂
þ
t

þ A2
x

A2

X̂
þ
t

þ A2
x þ AẐ t

2
; ðA12Þ

which is the exact form of the Kalman gain at steady state.
We can predict K from Ax

2 and AẐt

2
by substituting

Equation A11 into Equation A7 and rearranging:

�
A2

X̂
þ
t

�2

þ A2
x

�
A2

X̂
þ
t

�
j A2

xA
2

Ẑ t
¼ 0: ðA13Þ

To find AX̂t
+

2 , we use the quadratic formula. One positive
value is yielded:

A2

X̂
þ
t

¼
jA2

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2

xÞ2 þ 4A2
xA

2

Ẑt

q
2

: ðA14Þ

Substituting Equation A14 into Equation A12 yields an
analytic solution for Kt, based only on the measurement
and mapping uncertainties, once the system has reached
steady state.

Appendix B

From Appendix A, the general model of how the
visuomotor mapping drifts in time is ¯X

¯t = u + x, where u
is the expected change in mapping with time, and x is the
uncertainty associated with those mapping changes. The
expected value of u is 0 whether the mapping change is a
random walk or a random perturbation. The difference
between random walks and random perturbations appears
in x. Changes in mapping do not accumulate over time
with perturbationsVmapping is not a function of timeVso
the variance of x is 0 and Ax = 0. With random walks,
mapping changes do accumulate over time, so Ax = Awalkffiffiffiffiffiffiffiffiffiffiffi
t2jt1

p
. In our experiments, the interval between obser-

vations was always one trial: t2 j t1 = 1; thus, the
standard deviation of the mapping estimate X̂t should
increase by Awalk from one trial to the next when the
mapping is changed via a random walk.

Appendix C

Here we examine the results of Baddeley et al. (2003):
In particular, their conclusion that varying the amount of
random perturbation changed the rate of adaptation.
Subjects in their study performed a task like ours. The
mapping between reach endpoint and visual feedback was
varied by random walks, by random perturbations, and by
their sum. The researchers assessed adaptation rate
indirectly by calculating efficiency:

E ¼ MSEfilter

MSEsubject

; ðC1Þ

where MSEfilter and MSEsubject are the mean squared
reaching errors of a Kalman filter and human subject,
respectively. The filter’s parameters, Âx and Aẑ, were set
equal to Awalk and Aperturb, respectively. Therefore, as
Aperturb was increased, filter adaptation rate decreased
(Equations 4 and 5). Their results are plotted in Figure C1A.
When Awalk was large, efficiency was reasonably high and
did not vary with Aperturb. To explain the constant
efficiency at large Awalk, the authors reasoned that the
Kalman filter and humans must have responded similarly to
increases in Aperturb by increasing the Aẑ estimate. For small
Awalk, the increasing efficiency with Aperturb was attributed
to motor noise, which was present in humans but not in the
model. From this, they concluded that the subjects’
adaptation rate slowed with increases in perturbation.
One could, however, obtain the same efficiencies even if

human adaptation rate did not slow with perturbation. To
show this, we presented mixtures of a random walk and
random perturbation to a Kalman filter and a simulated
human observer. The filter and human simulations were
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the same with two important differences: (1) the filter’s
estimate of Aẑ was set equal to Aperturb, while the human
estimate of Aẑ was unaffected by Aperturb, and (2) the
human had motor noise while the filter had none. With

those assumptions, we conducted a simulation to calculate
efficiencies. The results are shown in Figure C1B. When
Awalk was large, efficiency was constant for a wide range
of Aperturb. When Awalk was small, efficiency increased

Figure C1. Efficiency (MSEfilter/MSEsubject) plotted as a function of Aperturb for different values of Awalk. (A) Results from Baddeley et al.
(2003). When Awalk was high, efficiency was relatively high and constant as Aperturb varied. When Awalk was small, efficiency increased
with increasing Aperturb. The authors argued the latter effect was caused by motor error, which was present in the human data but not in the
Kalman filter. (B) Our simulation results. Solid curves: The Kalman filter’s parameter Aẑ was equal to Aperturb, and the simulated subjects’
Aẑ was constant. Dashed lines: for comparison, efficiencies from a simulation in which Aẑ for both the filter and the simulated subjects was
unaffected. Thin lines indicate conditions that Baddeley et al. did not directly test (Awalk = 0.375 and 1.125 cm). Note the consequence
when the feedback uncertainty parameter in the simulated humans is not affected by perturbation but they are modeled as if it is. For a
given perturbation variance, MSEfilter will be lower than it otherwise would be, so efficiency will be lower than it should be. The effect is
disproportionately larger at large perturbations and therefore could be responsible for the constant efficiency levels at high Awalk in
Baddeley et al. In both simulations, the simulated subject had additive Gaussian motor noise with a standard deviation of 1 cm. In cases in
which Aẑ was unaffected by Aperturb, Aẑ was set to 0.133 cm, a reasonable value for the visual JND for localizing feedback of the size used
in Baddeley et al.
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with increasing Aperturb. These results are similar to those
of Baddeley and colleagues. It is therefore possible that
perturbation had no effect on adaptation rates in their
experiments, as we observed. We conclude that their
observation of constant efficiency under some conditions
does not necessarily support the conclusion that the
nervous system’s estimate of feedback uncertainty is
affected by random perturbation.
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